Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Biochemistry, Biophysics, and Structural Biology

Mitochondria

Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 100

Full-Text Articles in Entire DC Network

Structural Basis For Substrate Binding And Selection By Human Mitochondrial Rna Polymerase, Karl Herbine, Ashok Nayak, Dmitry Temiakov Aug 2024

Structural Basis For Substrate Binding And Selection By Human Mitochondrial Rna Polymerase, Karl Herbine, Ashok Nayak, Dmitry Temiakov

Department of Biochemistry and Molecular Biology Faculty Papers

The mechanism by which RNAP selects cognate substrates and discriminates between deoxy and ribonucleotides is of fundamental importance to the fidelity of transcription. Here, we present cryo-EM structures of human mitochondrial transcription elongation complexes that reveal substrate ATP bound in Entry and Insertion Sites. In the Entry Site, the substrate binds along the O helix of the fingers domain of mtRNAP but does not interact with the templating DNA base. Interactions between RNAP and the triphosphate moiety of the NTP in the Entry Site ensure discrimination against nucleosides and their diphosphate and monophosphate derivatives but not against non-cognate rNTPs and …


Unveiling The Intercompartmental Signaling Axis: Mitochondrial To Er Stress Response (Mersr) And Its Impact On Proteostasis, Jeson Li Aug 2024

Unveiling The Intercompartmental Signaling Axis: Mitochondrial To Er Stress Response (Mersr) And Its Impact On Proteostasis, Jeson Li

Dissertations & Theses (Open Access)

Maintaining protein homeostasis is essential for cellular health. During times of protein stress, cells deploy unique defense mechanisms to achieve resolution. Our previous research uncovered a cross-compartmental Mitochondrial to Cytosolic Stress Response (MCSR), a unique stress response activated by the perturbation of mitochondrial proteostasis, which ultimately results in the improvement of proteostasis in the cytosol. Here, we found that this signaling axis also influences the unfolded protein response of the endoplasmic reticulum (UPRER), suggesting the presence of a Mitochondria to ER Stress Response (MERSR). During MERSR, the IRE1 branch of UPRER is inhibited, introducing a previously unknown regulatory component of …


Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander May 2024

Towards A New Role Of Mitochondrial Hydrogen Peroxide In Synaptic Function, Cliyahnelle Z. Alexander

Student Theses and Dissertations

Aerobic metabolism is known to generate damaging ROS, particularly hydrogen peroxide. Reactive oxygen species (ROS) are highly reactive molecules containing oxygen that have the potential to cause damage to cells and tissues in the body. ROS are highly reactive atoms or molecules that rapidly interact with other molecules within a cell. Intracellular accumulation can result in oxidative damage, dysfunction, and cell death. Due to the limitations of H2O2 (hydrogen peroxide) detectors, other impacts of ROS exposure may have been missed. HyPer7, a genetically encoded sensor, measures hydrogen peroxide emissions precisely and sensitively, even at sublethal levels, during …


Mitochondrial Structure And Function In Oligodendrocytes; A Preliminary Study, Dimosthenis Sampatakos May 2024

Mitochondrial Structure And Function In Oligodendrocytes; A Preliminary Study, Dimosthenis Sampatakos

Senior Theses and Projects

Oligodendrocytes are glial cells responsible for the creation of myelin, a fatty substance that maximizes axon potential efficiency by creating a sheath around axons. The process of creating myelin is called myelination and is exclusively performed by oligodendrocytes. Myelination requires a lot of energy output to cover the needs of creating myelin. Oligodendrocytes have numerous mitochondria that help them meet that energy requirement fulfill their function. Oligodendrocyte progenitors are cells that differentiate to become myelinating oligodendrocytes. Not a lot is known about progenitors’ mitochondria and their mitochondrial metabolism. Differentiation is necessary to replenish oligodendrocytes that degrade. If the levels of …


Notch Signaling Regulates Perivascular Adipose Tissue Functions, Chenhao Yang May 2024

Notch Signaling Regulates Perivascular Adipose Tissue Functions, Chenhao Yang

Electronic Theses and Dissertations

High fat diet (HFD) can contribute to diabetes and cardiovascular disease (CVD) in humans, and diabetes is a major risk factor for CVD. The comorbidity of these two metabolic disorders indicates shared mechanisms of pathology. As a component of the vasculature, perivascular adipose tissue (PVAT) regulates vasoreactivity and contributes to obesity-related vascular pathologies, such as atherosclerosis, through paracrine signaling. The Notch pathway plays fundamental roles in cell fate decisions and growth, and is involved in adipocyte metabolic homeostasis. Previous studies have shown that constitutive Notch signaling in adipose tissue promotes pathological conversion of aortic PVAT in mice fed a control …


Investigating The Roles Of Dapk, P53/Cep-1, And Mitochondrial Damage In Necrotic Neurodegeneration In C. Elegans, Anil Singh Jan 2024

Investigating The Roles Of Dapk, P53/Cep-1, And Mitochondrial Damage In Necrotic Neurodegeneration In C. Elegans, Anil Singh

Dissertations and Theses

Stroke is one of the leading causes of death in the U.S., with minority groups, suffering higher fatality rates. Stroke is caused by ischemia, where occlusion of blood supply to the brain results in neurodegeneration. Most of the damage is attributed to excitotoxicity, where an accumulation of the neurotransmitter glutamate in the synapse overstimulates postsynaptic neurons and ultimately leads to cell death (largely by necrosis). Stroke treatments are often ineffective, due to the delay between the onset of stroke and the delivery of effective treatment. To address this, we focus our study on putative later-acting mediators of excitotoxicity such as …


A Naturally Derived Watercress Flower-Based Phenethyl Isothiocyanate-Enriched Extract Induces The Activation Of Intrinsic Apoptosis Via Subcellular Ultrastructural And Ca2+ Efflux Alterations In An In Vitro Model Of Human Malignant Melanoma, Sotiris Kyriakou, Louiza Potamiti, Nikoletta Demosthenous, Tom Amery, Kyle Stewart, Paul G. Winyard, Rodrigo Franco, Aglaia Pappa, Mihalis I. Panayiotidis Sep 2023

A Naturally Derived Watercress Flower-Based Phenethyl Isothiocyanate-Enriched Extract Induces The Activation Of Intrinsic Apoptosis Via Subcellular Ultrastructural And Ca2+ Efflux Alterations In An In Vitro Model Of Human Malignant Melanoma, Sotiris Kyriakou, Louiza Potamiti, Nikoletta Demosthenous, Tom Amery, Kyle Stewart, Paul G. Winyard, Rodrigo Franco, Aglaia Pappa, Mihalis I. Panayiotidis

School of Veterinary and Biomedical Sciences: Faculty Publications

The aim of the current study was to (i) extract isolated fractions of watercress flowers enriched in polyphenols, phenethyl isothiocyanate and glucosinolates and (ii) characterize the anticancer mode of action of non-lethal, sub-lethal and lethal concentrations of the most potent extract fraction in primary (A375) and metastatic (COLO-679) melanoma cells as well as non-tumorigenic immortalized keratinocyte (HaCaT) cells. Cytotoxicity was assessed via the Alamar Blue assay, whereas ultrastructural alterations in mitochondria and the endoplasmic reticulum were determined via transmission electron microscopy. Mitochondrial membrane depolarization was determined using Mito-MP dye, whereas apoptosis was evaluated through the activation of caspases-3, -8 and …


Is Vdac1 A Novel Bcl2 Family Member That Binds Bax?, Claire Pearson May 2023

Is Vdac1 A Novel Bcl2 Family Member That Binds Bax?, Claire Pearson

Honors Theses

Apoptosis is a type of regulated cell death important for normal embryonic development and maintenance of adult tissues by removing excess or dysfunctional cells to ensure proper functioning of organs. The Bcl-2 family of proteins determines whether apoptosis remains suppressed or becomes activated through the balance of interactions among pro-survival and pro-death members. A defining feature of the Bcl-2 family is a BH3 domain that drives interactions between the family members. Isoform 1 of the voltage dependent anion channel (VDAC1) has an important role in metabolism, but was recently found to have high homology with known BH3 domains. This study …


Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie May 2023

Mitochondrial Roles In Developmentally Programmed Heart Disease, Eli John Louwagie

Dissertations and Theses

Offspring of diabetic and obese mothers (ODOM) have greater risks of heart disease at birth and later in life. However, prevention is hindered because underlying mechanisms are poorly understood. Mounting studies in the Developmental Origins of Health and Disease field suggest that mitochondria play key roles in developmentally programmed heart disease similar to the roles they play in cardiomyopathy in adults with diabetes and obesity. However, whether mitochondria are responsible for the short[1]and long-term cardiac disease seen in ODOM remains unknown. Here, we sought to delineate the roles of mitochondria in the hearts of ODOM, determine whether mitochondria are playing …


Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter May 2023

Nanosecond Pulsed Electric Field Modulates Electron Transport And Mitochondrial Structure And Function, Lucas Nelson Potter

Biomedical Engineering Theses & Dissertations

Pulsed power treatment has been used to induce regulated cell death (RCD) in cells or ablate tumors in animals. A subset of pulsed power as electroporation with high voltage and pulse duration of milliseconds is used for biomedical treatment to induce pores in the plasma membrane of cells. Nanosecond Pulsed Electric Fields (nsPEFs)– an extension of electroporation, uses waveforms with pulse durations on the order of 10-900 nanoseconds. nsPEF treatment has demonstrated intracellular effects for potential biomedical applications. In this work, nsPEF treatment is used to demonstrate changes that affect viability, plasma membrane permeability ROS (Reactive Oxygen Species) in the …


Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry Feb 2023

Dpc29 Promotes Post-Initiation Mitochondrial Translation In Saccharomyces Cerevisiae, Kyle A. Hubble, Michael F. Henry

Rowan-Virtua School of Osteopathic Medicine Departmental Research

Mitochondrial ribosomes synthesize essential components of the oxidative phosphorylation (OXPHOS) system in a tightly regulated process. In the yeast Saccharomyces cerevisiae, mitochondrial mRNAs require specific translational activators, which orchestrate protein synthesis by recognition of their target gene's 5'-untranslated region (UTR). Most of these yeast genes lack orthologues in mammals, and only one such gene-specific translational activator has been proposed in humans-TACO1. The mechanism by which TACO1 acts is unclear because mammalian mitochondrial mRNAs do not have significant 5'-UTRs, and therefore must promote translation by alternative mechanisms. In this study, we examined the role of the TACO1 orthologue in yeast. We …


Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar Jan 2023

Investigating The Relationship Between Metabolic Reprogramming And Peripheral Cd4+ T-Cell Inflammation In Human Type 2 Diabetes Pathogenesis, Gabriella Kalantar

Theses and Dissertations--Microbiology, Immunology, and Molecular Genetics

Chronic, low-grade systemic inflammation rises in obesity and promotes type 2 diabetes (T2D). Circulating immune cells are key indicators of obesity and T2D pathogenesis. T cells outnumber monocytes, in blood, suggesting that T cells might fuel peripheral inflammation in obesity/T2D. Our lab’s work supports this idea by identification of a Th17 cytokine profile in T2D from T-cell stimulated peripheral blood mononuclear cells. Work described herein further supported this work by demonstrating that T cells dominate peripheral inflammation over monocytes across the spectrum of obesity and glycemic control. Our lab has also recently shown that inflammation changes during prediabetes (preT2D), identified …


Specialized Metabolism In Retina, Retinal Pigmented Epithelium, And Testis, Siyan Zhu Jan 2023

Specialized Metabolism In Retina, Retinal Pigmented Epithelium, And Testis, Siyan Zhu

Graduate Theses, Dissertations, and Problem Reports

The retina and its neighboring retinal pigmented epithelium (RPE) are high energy-demanding and metabolically active tissues with specialized and complementary metabolism. They are metabolically interdependent and impact each other’s viability. Interestingly, many of the metabolic features in the retina and RPE are shared with the testis. For example, testis is also energy costly due to continuous sperm differentiation and it has similar metabolic inter-dependence between different testis cells. Both the retina and testis are vulnerable to mitochondrial metabolic impairments.

We conducted three research projects to understand 1) the nutrient utilization and communication in retina and RPE; 2) The profiling of …


Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill Dec 2022

Therapies For Mitochondrial Disorders, Kayli Sousa Smyth, Anne Mulvihill

SURE Journal: Science Undergraduate Research Experience Journal

Mitochondria are cytoplasmic, double-membrane organelles that synthesise adenosine triphosphate (ATP). Mitochondria contain their own genome, mitochondrial DNA (mtDNA), which is maternally inherited from the oocyte. Mitochondrial proteins are encoded by either nuclear DNA (nDNA) or mtDNA, and both code for proteins forming the mitochondrial oxidative phosphorylation (OXPHOS) complexes of the respiratory chain. These complexes form a chain that allows the passage of electrons down the electron transport chain (ETC) through a proton motive force, creating ATP from adenosine diphosphate (ADP). This study aims to explore current and prospective therapies for mitochondrial disorders (MTDS). MTDS are clinical syndromes coupled with abnormalities …


The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter Dec 2022

The Role Of Parkin In Mitochondrial Dna, Eliezer Lichter

Theses & Dissertations

Mitochondria are at the center of biological phenomena such as aging and diseases, especially neurodegenerative diseases. While the discovery of mitochondria only came approximately 200 years after the cell was discovered, a lot of progress has been made since. The mitochondrial genome encodes proteins vital for mitochondrial function. These proteins are only a subset of the proteins present in mitochondria; the rest are nuclear encoded. The nucleus also encodes cytosolic proteins vital for mitochondrial maintenance. One of these is Parkin, an E3 ubiquitin ligase that ubiquitinates mitochondrial proteins as mitochondria become depolarized. Its activity has been shown to be involved …


Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble Dec 2022

Dpc29 Promotes Mitochondrial Translation Post-Initation In Saccharomyces Cerevisiae, Kyle Andrew Hubble

Graduate School of Biomedical Sciences Theses and Dissertations

Although the cytosolic and bacterial translation systems are well studied, much less is known about translation in mitochondria. In the yeast Saccharomyces cerevisiae, mitochondrial gene expression is predominately regulated by translational activators. These regulators are thought to promote translation by binding the elongated 5’-UTRs on their target mRNAs. Since mammalian mitochondrial mRNAs generally lack 5’-UTRs, they must regulate translation by other mechanisms. As expected, most yeast translational activators lack orthologues in mammals. Recently, a mitochondrial gene-specific translational activator, TACO1, was reported in mice and humans. To better define its role in mitochondrial translation I examined the yeast TACO1 orthologue, DPC29. …


Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam Dec 2022

Ankyrin Dependent Mitochondrial Function And Bioenergetics In The Heart, Janani Subramaniam, Janani Subramaniam

Dissertations & Theses (Open Access)

ANK2 mutations in patients are associated with numerous arrhythmias, cardiomyopathies, and other heart defects. In the heart, AnkB, the protein encoded by ANK2, clusters relevant ion channels and cell adhesion molecules in several important domains; however, its role at Mitochondria Associated ER/SR Membranes (MAMs) has yet to be investigated. MAMs are crucial to mitochondrial function and metabolism and are signaling hubs implicated in various cardiac pathologies. Among several functions, these sites mediate the direct transfer of calcium from the ER/SR to the mitochondria to modulate ATP synthesis. Given that mitochondrial function and energy production are paramount to cardiovascular heath, …


Editorial: Function And Formation Of Mitochondrial Metalloproteome, Michał Wasilewski, Vishal M. Gohil, Oleh Khalimonchuk Sep 2022

Editorial: Function And Formation Of Mitochondrial Metalloproteome, Michał Wasilewski, Vishal M. Gohil, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

No abstract provided.


Loss Of Num1-Mediated Cortical Dynein Anchoring Negatively Impacts Respiratory Growth, Antoineen J. White, Clare S. Harper, Erica M. Rosario, Jonathan V. Dietz, Hannah G. Addis, Jennifer L. Fox, Oleh Khalimonchuk, Laura L. Lackner Sep 2022

Loss Of Num1-Mediated Cortical Dynein Anchoring Negatively Impacts Respiratory Growth, Antoineen J. White, Clare S. Harper, Erica M. Rosario, Jonathan V. Dietz, Hannah G. Addis, Jennifer L. Fox, Oleh Khalimonchuk, Laura L. Lackner

Department of Biochemistry: Faculty Publications

Num1 is a multifunctional protein that both tethers mitochondria to the plasma membrane and anchors dynein to the cell cortex during nuclear inheritance. Previous work has examined the impact loss of Num1-based mitochondrial tethering has on dynein function in Saccharomyces cerevisiae; here, we elucidate its impact on mitochondrial function. We find that like mitochondria, Num1 is regulated by changes in metabolic state, with the protein levels and cortical distribution of Num1 differing between fermentative and respiratory growth conditions. In cells lacking Num1, we observe a reproducible respiratory growth defect, suggesting a role for Num1 in not only maintaining mitochondrial …


Mechanisms And Roles Of Dynamic Actin Assembly Around Dysfunctional Mitochondria, Tak Shun Fung Aug 2022

Mechanisms And Roles Of Dynamic Actin Assembly Around Dysfunctional Mitochondria, Tak Shun Fung

Dartmouth College Ph.D Dissertations

Possessing the ability to efficiently generate ATP required to sustain cellular functions, mitochondria are often considered the ‘powerhouses of the cell’. However, our understanding of mitochondria in cell biology was further expanded when we recognized that communication between this unique organelle and the rest of the cell regulates cellular bioenergetics, metabolism and signaling processes such as mitophagy and apoptosis. Here, I investigate signaling between mitochondria and the actin cytoskeleton, and how this signaling regulates mitochondrial dynamics and cellular function. Specifically, I find that, upon mitochondrial dysfunction, actin polymerizes rapidly around the dysfunctional organelle, which we term ‘acute damage-induced actin’ (ADA). …


Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai Aug 2022

Editorial: Mitochondria, Metabolism And Cardiovascular Diseases, Jun-Ichiro Koga, Xinghui Sun, Masuko Ushio-Fukai

Department of Biochemistry: Faculty Publications

No abstract provided.


Studying Acetylation Of Aconitase Isozymes By Genetic Code Expansion, Jessica Araujo May 2022

Studying Acetylation Of Aconitase Isozymes By Genetic Code Expansion, Jessica Araujo

Graduate Theses and Dissertations

The tricarboxylic acid (TCA) cycle is a very important, centrally located, energy-producing pathway that connects numerous other metabolic and regulatory pathways. Enzymes of this cycle have been more recently implicated in various cancers and neurometabolic disorders, however, the exact mechanism by which this happens becomes quite complex when considering the potential modification of these enzymes and the presence of multiple forms of the enzymes and therefore there is much to be studied in this area.

Aconitase has become a recent enzyme of interest as its substrate, citrate, has been found to play a major role in many vital processes within …


Role Of Bmi1 In Acute Lung Injury, María Helena Hernández-Cuervo Mar 2022

Role Of Bmi1 In Acute Lung Injury, María Helena Hernández-Cuervo

USF Tampa Graduate Theses and Dissertations

Acute Lung Injury (ALI) is a set of signs and symptoms that lead to acute hypoxemic respiratory failure characterized by bilateral pulmonary infiltrates not attributed to cardiogenic origin. It is caused by a massive innate immune response, with the migration of white blood cells (neutrophils and macrophages principally) and a cytokine storm, followed by alterations in mitochondrial function, increase in reactive oxygen species production, and oxidative stress that in turn induces more mitochondrial damage. Several studies have shown that mitochondrial alterations are key events in the mechanism of ALI and reducing mitochondrial dysfunction could be a possible target in the …


Determining The Effects Of Chemical Exposure On Hepatocyte Mitochondrial Networks And Cell Viability, Bethany Eaton Jan 2022

Determining The Effects Of Chemical Exposure On Hepatocyte Mitochondrial Networks And Cell Viability, Bethany Eaton

All Master's Theses

Mitochondria are cellular organelles that are becoming more recently studied. One of their main functions is the production of energy through cellular respiration, which is crucial to cell life. However, they are also associated with numerous disease states. It is hypothesized that reactive oxygen species (ROS), largely produced in mitochondria, induce oxidative stress and affect mitochondrial morphology along with cell viability. This study compares chemical exposure of menadione, an ROS producer, and phthalates (plasticizers) on two mouse hepatocyte cell lines to determine the effects they have on mitochondrial morphology and cell viability. Three experiments were performed to analyze the effects …


Mitochondrial Metal Homeostasis: A Look Into Iron And Copper Mobilization Within Mitochondria, Jonathan Dietz Nov 2021

Mitochondrial Metal Homeostasis: A Look Into Iron And Copper Mobilization Within Mitochondria, Jonathan Dietz

Department of Biochemistry: Dissertations, Theses, and Student Research

Cellular iron and copper homeostasis is interdependent with mitochondrial iron and copper homeostasis. Mitochondria must import iron to form iron-sulfur clusters and heme, while it must import copper for usage and storage. These cofactors are incorporated into mitochondrial proteins that support essential functions, including cellular respiration and maintaining redox homeostasis. In turn, mitochondria also provide heme to the cell and enables the biogenesis of cytosolic iron-sulfur cluster containing proteins, while also providing copper when needed. Due to both metals (and their modified species) reactivity, iron and copper are stored and trafficked within the mitochondria carefully. Although these cofactors are crucial …


Mitochondrial Contact Site And Cristae Organizing System (Micos) Machinery Supports Heme Biosynthesis By Enabling Optimal Performance Of Ferrochelatase, Jonathan V. Dietz, Mathilda M. Willoughby, Robert B. Piel, Teresa A. Ross, Iryna Bohovych, Hannah G. Addis, Jennifer L. Fox, William N. Lanzilotta, Harry A. Dailey, James A. Wohlschlegel, Amit R. Reddi, Amy E. Medlock, Oleh Khalimonchuk Oct 2021

Mitochondrial Contact Site And Cristae Organizing System (Micos) Machinery Supports Heme Biosynthesis By Enabling Optimal Performance Of Ferrochelatase, Jonathan V. Dietz, Mathilda M. Willoughby, Robert B. Piel, Teresa A. Ross, Iryna Bohovych, Hannah G. Addis, Jennifer L. Fox, William N. Lanzilotta, Harry A. Dailey, James A. Wohlschlegel, Amit R. Reddi, Amy E. Medlock, Oleh Khalimonchuk

Department of Biochemistry: Faculty Publications

Heme is an essential cofactor required for a plethora of cellular processes in eukaryotes. In metazoans the heme biosynthetic pathway is typically partitioned between the cytosol and mitochondria, with the first and final steps taking place in the mitochondrion. The pathway has been extensively studied and its biosynthetic enzymes structurally characterized to varying extents. Nevertheless, understanding of the regulation of heme synthesis and factors that influence this process in metazoans remains incomplete. Therefore, we investigated the molecular organization as well as the physical and genetic interactions of the terminal pathway enzyme, ferrochelatase (Hem15), in the yeast Saccharomyces cerevisiae. Biochemical and …


Late Embryogenesis Abundant Proteins And Mitochondrial Membranes From An Animal Extremophile: Insights Into Severe Water Stress, John Marcus Anderson Jul 2021

Late Embryogenesis Abundant Proteins And Mitochondrial Membranes From An Animal Extremophile: Insights Into Severe Water Stress, John Marcus Anderson

LSU Doctoral Dissertations

This dissertation focuses on two major topics germane to mechanisms by which animals tolerate extreme water stress. First, the impact of transgenic expression of late embryogenesis abundant proteins (LEA) on water stress tolerance of the fruit fly Drosophila melanogaster was investigated. The overall aim was to extend current understanding of the protective properties of LEA proteins documented with isolated cells to a desiccation-sensitive organism during exposure to drying and hyperosmotic stress. Four lines of D. melanogaster were created that expressed transgenes encoding selected LEA proteins originally identified in embryos of the extremophile Artemia franciscana. After 80% tissue water loss, …


Evaluating Bioenergetics And Mitochondrial Dynamics In Patient Fibroblasts With Pathogenic Mitochondrial Dna Mutations Causing Leigh Syndrome, Ajibola Bakare Jul 2021

Evaluating Bioenergetics And Mitochondrial Dynamics In Patient Fibroblasts With Pathogenic Mitochondrial Dna Mutations Causing Leigh Syndrome, Ajibola Bakare

Graduate Theses and Dissertations

Leigh syndrome (LS) is a rare fatal mitochondrial disorder of infants caused by pathogenic mutations in the nuclear (nDNA) or mitochondrial DNA (mtDNA) leading to mitochondrial dysfunction. The extent to which pathogenic mtDNA variants regulate disease severity in LS is not well understood. The heterogeneous nature of this disorder, based in part by complex mitochondrial genetics, and the nuclear and mitochondrial cross-talk has made it particularly challenging to investigate and develop therapies for treating LS . While the prognosis is poor, several studies are underway to understand the pathophysiology of LS. This dissertation provides a comprehensive structural and functional analysis …


A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso Jul 2021

A Time-Course Characterization Of Muscle Function And Mitochondrial Markers During Colorectal Cancer-Induced Cachexia In Tumor-Bearing Male Mice, Ana Cabrera Ayuso

Graduate Theses and Dissertations

Cachexia is a multisystemic and multifactorial syndrome prevalent in cancer patients. It is clinically defined by involuntary loss of >5% weight in a six-month window, despite nutritional interventions. A negative energy balance characterizes cancer cachexia (CC), it is associated with weakness and fatigue in skeletal muscle. Impaired muscle function is associated with lower quality of life in cancer patients. Defects in mitochondrial function are strongly associated with muscle wasting. This study explored muscular contractile function and mitochondrial quality control (MQC) markers in soleus, gastrocnemius, and tibialis anterior (TA) muscles of C26-induced male tumor-bearing mice during a 25-day time course. It …


Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich May 2021

Mitochondrial Distribution Of Glycine Receptors In Motor Neuron Cell Lines, Katsiaryna Milashevich

Student Theses and Dissertations

Although non-essential, glycine plays an important role in major metabolic reactions and is most known for its anti-inflammatory effects. An accumulation of contemporary research has shown that glycine is able to stabilize membrane potential using glycine receptors at the cellular level and to protect mitochondrial function directly, whether it is from inflammation, heavy metal poisoning, or ischemia-induced neuroinflammation. In this research, the existence of a hypothetical mitochondrial glycine receptor is examined. Immunofluorescence imaging was used to examine the presence of the glycine receptor subunits alpha 1 and alpha 2 in both non- differentiated and differentiated neuroblastoma cell lines. The preliminary …