Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Dissecting Interactions Across Gene Regulatory Layers In C. Elegans, Morgan Taylor Dec 2022

Dissecting Interactions Across Gene Regulatory Layers In C. Elegans, Morgan Taylor

Biological Sciences Theses and Dissertations

The nematode Caenorhabditis elegans is a powerful tool for studying nervous system genetics. Though relatively simple compared to mammals, C. elegans boasts a remarkably well-conserved neuronal genome and proteome, and its utility in the characterization of neuronal genes has been well-established. However, gene expression is often controlled by complex interactions between multiple genes, and teasing apart the functions of individual genes within such networks remains a challenge. Dissecting these interaction networks is crucial in determining the multifaceted functions of important, conserved regulatory genes. Here we explore interactions between gene regulatory layers in the C. elegans nervous system, employing a synthetic …


Elucidating Mechanisms Of Biofluorescence And Bioluminescence In Marine Organisms, Andrew M. Guarnaccia Jun 2022

Elucidating Mechanisms Of Biofluorescence And Bioluminescence In Marine Organisms, Andrew M. Guarnaccia

Dissertations, Theses, and Capstone Projects

Biofluorescence and bioluminescence are two methods of light emission that entail separate mechanisms of action but end at the same process: a colorful display that have tremendous ecological and behavioral benefits, whether it be used to communicate with conspecifics, camouflage into a multicolored background, attract unsuspecting prey, or alert others to a predator. In biofluorescence, higher-energy, shorter wavelength light is absorbed then re-emitted as lower-energy, longer-wavelength light. Bioluminescence on the other hand entails a chemical reaction in which a small molecule is oxidized by an enzyme, creating a high-energy intermediate that sheds the excess energy in the form of visible …


Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi May 2022

Assembly Of The Peripheral Arm Subunits Of Escherichia Coli Complex I And Analysis Of Clinical Mutations, Hind Alkhaldi

Biological Sciences Theses and Dissertations

Respiratory Complex I from E. coli is a proto-type of the mitochondrial enzyme, consisting of a 6-subunit peripheral arm (B-CD-E-F-G-I) and a 7-subunit membrane arm. When subunits E-F-G (N-module), were expressed alone they formed an active complex as determined by co-immunoprecipitation and native gel electrophoresis. When co-expressed with subunits B and CD, only a complex of E-F-G was found. When these five subunits were co-expressed with subunit I and two membrane subunits, A and H, a complex of B-CD-E-F-G-I was membrane-bound, constituting the N- and Q-modules. Assembly of Complex I was also followed by splitting the genes between two plasmids, …


Development And Analysis Of Next-Generation Polymeric And Bio-Ceramic Based Orthopedic Scaffolds By Advanced Manufacturing Techniques, Sudeep K. Gummadi May 2022

Development And Analysis Of Next-Generation Polymeric And Bio-Ceramic Based Orthopedic Scaffolds By Advanced Manufacturing Techniques, Sudeep K. Gummadi

ETD Archive

Gliomas express mutant isocitrate dehydrogenases producing excessive amounts of D 2-hydroxyglutarate (D2HG) and releasing some of it into the environment. The immune surveillance is reduced as a result, however, the mechanisms behind lymphocyte suppression by the D2HG stereoisomer remain unknown. I incubated Jurkat T cells with D2HG at concentrations present within and surrounding gliomas, or its obverse L2HG stereoisomer, and quantified 2HG isomers within washed cells by TSPC derivatization with stable isotope-labeled D2HG and L2HG internal standards, HPLC separation, and mass spectrometry. D2HG was found in quiescent cells in double the amount of L2HG. External D2HG or L2HG increased the …


Instability And Extrachromosomal Circular Dna Formation At Microsatellites And Unstable Dna Sequences, Matilyn M. Shanahan Jan 2022

Instability And Extrachromosomal Circular Dna Formation At Microsatellites And Unstable Dna Sequences, Matilyn M. Shanahan

Browse all Theses and Dissertations

We have previously documented our evidence of genetic instabilities at the (Pu/Py)78 and (ATTCT)47 sequences and our reasoning for identifying break-induced replication (BIR) as the mode of repair responsible for the mutations in the DNA flanking the unstable inserts. Now, as our lab investigates the protein mechanisms at play in the BIR pathway taking place at these sites, we are also expanding our knowledge of how this mechanism extends into the pathways responsible for forming extrachromosomal circular DNA (eccDNA) molecules. We have documented the phenomena posed as the driving factors for eccDNA formation in our systems containing (Pu/Py)78 and (ATTCT)47. …


Genomic Instability At A Polypurine/Polypyrimidine Repeat Sequence, Nathen S. Zavada Jan 2022

Genomic Instability At A Polypurine/Polypyrimidine Repeat Sequence, Nathen S. Zavada

Browse all Theses and Dissertations

Microsatellite repeat sequences have been shown to induce replication stalling, fork collapse, double-strand breaks (DSBs), and possibly stimulate break-induced replication. In this study we use a dual-fluorescent HeLa model that is designed to monitor recombination at an ectopic site through use of flow cytometry and inverse PCR with a microsatellite in the lagging strand for DNA synthesis. To test the stability of the 78 bp polypurine/pyrimidine repeat from the PDK1 locus, we subjected cells to replication stress drugs designed to induce DSBs and measure break-induced replication (BIR). The study revealed that polypurine repeat cells undergo endogenous stress contributing to instability …


The Role Of Pi4kb In Cellular Localization Of Small Gtpases, Parisa Sadrpour Jan 2022

The Role Of Pi4kb In Cellular Localization Of Small Gtpases, Parisa Sadrpour

Browse all Theses and Dissertations

Constitutively active oncogenic mutant K-Ras is one the principal contributors to human cancers including 90% of pancreatic, 50% of colorectal and 32% of non-small cell lung cancers. However, except for K-Ras G12C oncogenic mutant, which only presents in about 13% of non-small cell lung cancer patients, there is no anti-K-Ras therapy for a considerable subset of K-Ras mutations in human tumors, reflecting challenges for targeting oncogenic K-Ras activity. K-Ras is a membrane-bound small GTPase; when active, it triggers multiple signaling pathways regulating a variety of key cellular functions such as cell growth, proliferation and survival. To initiate these signaling cascades, …


Reconstruction Of Gut Microbiome Via Intermittent Feeding, Kourtney Sprague Jan 2022

Reconstruction Of Gut Microbiome Via Intermittent Feeding, Kourtney Sprague

Browse all Theses and Dissertations

The benefits of intermittent fasting have been studied across many facets of health. It is known that physiologically fasting results in a metabolic switch from liver-derived glucose to adipose cell derived ketones to be used as energy and signaling molecules. Fasting down-regulates inflammation, increases expression of antioxidant defenses, and activates pathways for DNA repair and autophagy. While fasting or intermittent feeding effects on host physiology have been identified, the relationship between fasting and gut microbiome is not as well known. In times of gut rest, resident microbes undergo detoxication and motility, and in times of activity, gut microbes undergo DNA …