Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz Jan 2013

Biophotonic Logic Devices Based On Quantum Dots And Temporally-Staggered Forster Energy Transfer Relays, Jonathan C. Claussen, W. Russ Algar, Niko Hildebrandt, Kimihiro Susumu, Mario G. Ancona, Igor L. Medintz

Jonathan C. Claussen

Integrating photonic inputs/outputs into unimolecular logic devices can provide significantly increased functional complexity and the ability to expand the repertoire of available operations. Here, we build upon a system previously utilized for biosensing to assemble and prototype several increasingly sophisticated biophotonic logic devices that function based upon multistep Förster resonance energy transfer (FRET) relays. The core system combines a central semiconductor quantum dot (QD) nanoplatform with a long-lifetime Tb complex FRET donor and a near-IR organic fluorophore acceptor; the latter acts as two unique inputs for the QD-based device. The Tb complex allows for a form of temporal memory by …


Yttrium(Iii) Oxomolybdates(Vi) As Potential Host Materials For Luminescence Applications: An Investigation Of Eu3+-Doped Y2[Moo4]3 And Y2[Moo4]2[Mo2o7], Sonja Laufer, Sabine Strobel, Thomas Schleid, Joanna Cybinska, Anja V. Mudring, Ingo Hartenbach Jan 2013

Yttrium(Iii) Oxomolybdates(Vi) As Potential Host Materials For Luminescence Applications: An Investigation Of Eu3+-Doped Y2[Moo4]3 And Y2[Moo4]2[Mo2o7], Sonja Laufer, Sabine Strobel, Thomas Schleid, Joanna Cybinska, Anja V. Mudring, Ingo Hartenbach

Anja V. Mudring

Two ternary yttrium(III) oxomolybdates(VI) are investigated, both structurally and spectroscopically. The crystal structure of Y2[MoO4]3 was solved at room temperature in the orthorhombic space group Pba2 (a = 1030.21(3), b = 1032.41(3), c = 1057.25(3) pm, Z = 4). In the unit cell, three discrete ortho-oxomolybdate(VI) units [MoO4]2− and two Y3+ cations, both with CN = 7 featuring a monocapped trigonal-prismatic oxygen environment, can be distinguished. Y2[MoO4]2[Mo2O7] crystallizes monoclinically in the space group P21/c (a = 681.85(2), b = 959.13(3), c = 1052.99(3) pm, β = 105.586(2)°) with two formula units per unit cell. In this compound the anionic environment …


Refactoring The Silent Spectinabilin Gene Cluster Using A Plug-And-Play Scaffold, Zengyi Shao, Guodong Rao, Chun Li, Zhanar Abil, Yunzi Luo, Huimin Zhao Jan 2013

Refactoring The Silent Spectinabilin Gene Cluster Using A Plug-And-Play Scaffold, Zengyi Shao, Guodong Rao, Chun Li, Zhanar Abil, Yunzi Luo, Huimin Zhao

Zengyi Shao

Natural products (secondary metabolites) are a rich source of compounds with important biological activities. Eliciting pathway expression is always challenging but extremely important in natural product discovery because an individual pathway is tightly controlled through a unique regulation mechanism and hence often remains silent under the routine culturing conditions. To overcome the drawbacks of the traditional approaches that lack general applicability, we developed a simple synthetic biology approach that decouples pathway expression from complex native regulations. Briefly, the entire silent biosynthetic pathway is refactored using a plug-and-play scaffold and a set of heterologous promoters that are functional in a heterologous …


Activation And Characterization Of A Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster, Yunzi Luo, Hua Huang, Jing Liang, Meng Wang, Lu Lu, Zengyi Shao, Ryan E. Cobb, Huimin Zhao Jan 2013

Activation And Characterization Of A Cryptic Polycyclic Tetramate Macrolactam Biosynthetic Gene Cluster, Yunzi Luo, Hua Huang, Jing Liang, Meng Wang, Lu Lu, Zengyi Shao, Ryan E. Cobb, Huimin Zhao

Zengyi Shao

Polycyclic tetramate macrolactams (PTMs) are a widely distributed class of natural products with important biological activities. However, many of these PTMs have not been characterized. Here we apply a plug-and-play synthetic biology strategy to activate a cryptic PTM biosynthetic gene cluster SGR810-815 from Streptomyces griseus and discover three new PTMs. This gene cluster is highly conserved in phylogenetically diverse bacterial strains and contains an unusual hybrid polyketide synthase-nonribosomal peptide synthetase, which resembles iterative polyketide synthases known in fungi. To further characterize this gene cluster, we use the same synthetic biology approach to create a series of gene deletion constructs and …


Structure, Stability, And Electronic Interactions Of Polyoxometalates On Functionalized Graphene Sheets, Jean-Philippe Tessonnier, Stephanie Goubert-Renaudin, Shaun Alia, Yushan Yan, Mark A. Barteau Jan 2013

Structure, Stability, And Electronic Interactions Of Polyoxometalates On Functionalized Graphene Sheets, Jean-Philippe Tessonnier, Stephanie Goubert-Renaudin, Shaun Alia, Yushan Yan, Mark A. Barteau

Jean-Philippe Tessonnier

Polyoxometalates (H3PMo12O40, H 3PW12O40, H4PMo11VO 40) supported on oxygen- and alkyl-functionalized graphene sheets were investigated. Discrete molecular species were directly observed by electron microscopy at loadings below 20 wt.%. The interaction between the polyoxometalates and the graphene surface was found to significantly impact their vibrational spectra and a linear correlation between the frequency of the M-Oc-M vibration and the dispersion was evidenced by FTIR. While bulk-like electronic properties were observed for small aggregates (2-5 nm), UV-vis spectroscopy and cyclic voltammetry revealed changes in the electronic structure of isolated molecular species as a result of their interaction with graphene. Because of …