Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Entire DC Network

Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen Jul 2022

Surpassing The Standard Quantum Limit Using An Optical Spring, Torrey Cullen

LSU Doctoral Dissertations

In 1916, Albert Einstein predicted the existence of gravitational waves based on his new theory of general relativity. He predicted an accelerating mass with a non-zero quadrupole moment would emit energy in the form of gravitational waves. Often referred to as ripples in space-time, gravitational waves are extremely small by the time reach Earth, potentially having traveled hundreds of megaparsecs. It is common for these ripples in space-time to stretch and squeeze matter 1000 times smaller than the width of a proton.
Laser interferometer observatories were first built in the 1990s in the US and Europe, and as sensitivity improvements …


From Equal-Mass To Extreme-Mass-Ratio Binary Inspirals: Simulation Tools For Next Generation Gravitational Wave Detectors, Samuel Douglas Cupp Jun 2022

From Equal-Mass To Extreme-Mass-Ratio Binary Inspirals: Simulation Tools For Next Generation Gravitational Wave Detectors, Samuel Douglas Cupp

LSU Doctoral Dissertations

Current numerical codes can successfully evolve similar-mass binary black holes systems, and these numerical waveforms contributed to the success of the LIGO Collaboration's detection of gravitational waves. LIGO requires high resolution numerical waveforms for detection and parameter estimation of the source. Great effort was expended over several decades to produce the numerical methods used today. However, future detectors will require further improvements to numerical techniques to take full advantage of their detection capabilities. For example, the Laser Interferometer Space Antenna (LISA) will require higher resolution simulations of similar-mass-ratio systems than LIGO. LISA will also be able to detect extreme-mass-ratio inspiral …


Ligers Interferometric Survey Of M Dwarf Diameters, Tyler Gregory Ellis May 2022

Ligers Interferometric Survey Of M Dwarf Diameters, Tyler Gregory Ellis

LSU Doctoral Dissertations

In this dissertation, I present the largest single collection of M dwarf stellar radii in over a decade and contextualize these measurements with the systematic model discrepancies. The measurements of stellar angular diameters are also important in the quantification of the properties of exoplanets. In order to estimate the property of the exoplanet, it is first necessary to quantify the properties of the planet's host star. Using the survey results complemented with previous direct observations of the angular diameters of low mass stars, I develop updated updated surface brightness relationships. These relationships allow predictions of angular diameters using easy to …


Are Long-Period Exoplants Around Cool Stars More Common Than We Thought?, Emily Jane Safron Mar 2022

Are Long-Period Exoplants Around Cool Stars More Common Than We Thought?, Emily Jane Safron

LSU Doctoral Dissertations

The Kepler mission has been the catalyst for discovery of nearly 5,000 confirmed and candidate exoplanets. The majority of these candidates orbit Sun-like stars, and have orbital periods comparable to or shorter than that of the Earth, due to the selection bias inherent in the transit method and the limitations of automated transit search algorithms. We aim to develop a richer understanding of the population of exoplanets around the lowest-mass stars, the M spectral type. We are particularly interested in exoplanets with long orbital periods, which are difficult or impossible to find using standard transit search algorithms. In our study, …


The Spectra Of Hydrogen-Deficient Carbon Stars: The Effects Of Evolution And Nucleosynthesis, Courtney Lauren Crawford Mar 2022

The Spectra Of Hydrogen-Deficient Carbon Stars: The Effects Of Evolution And Nucleosynthesis, Courtney Lauren Crawford

LSU Doctoral Dissertations

The rare class of stars known as the Hydrogen-deficient Carbon (HdC) stars includes the R Coronae Borealis (RCB) variables and the non-variable Dustless HdC (dLHdC) stars. These stars are believed to be formed via the merger of two white dwarf (WD) stars. They are known to exhibit many spectral peculiarities, such as partial helium burning products, enhancement of s-processed material and severe hydrogen-deficiency. In this work I explore many facets of HdC evolution. I begin by creating 18 HdC models in the stellar evolution code Modules for Experiments in Stellar Astrophysics (MESA) by merging two WD progenitors and evolving the …