Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Entire DC Network

Synthesis And Development Of Zwitterionic Pei (Zpei) For Optimized Delivery Of Nucleic Acids, Joseph Raleigh Duke Iii Jan 2017

Synthesis And Development Of Zwitterionic Pei (Zpei) For Optimized Delivery Of Nucleic Acids, Joseph Raleigh Duke Iii

Theses and Dissertations--Chemistry

Gene therapy holds promise for the treatment a wide range of diseases ranging from cystic fibrosis to cardiovascular disease to cancer. The need for safe and efficient gene delivery methods remains the primary barrier to human gene therapy. Non-viral vector materials, including polymers, can be designed to be biocompatible and non-immunogenic, but lack the efficiency to be clinically relevant. Gene therapy awaits the development of new materials that are both safe and efficient. Here, we have synthesized a series of modified zwitterionic polymers based on the common transfecting agent polyethylenimine (PEI). Using a variety of biochemical and biophysical methods we …


Characterization And Application Of Hybrid Nanostructures For Enhanced Biological Imaging Using Fluorescence Microscopy Techniques, William E. Martin Jan 2017

Characterization And Application Of Hybrid Nanostructures For Enhanced Biological Imaging Using Fluorescence Microscopy Techniques, William E. Martin

Theses and Dissertations--Chemistry

Fluorescence microscopy is a powerful tool for interpreting the structure and function of biomolecules, and their interactions with one another. Understanding fundamental biological mechanisms is important to the development of improved treatments for a variety of diseases. Fluorescent tags are used to track the motion and longevity of such events, with the ability to monitor several biomolecules at once. Currently, many of these studies are conducted using bulk measurements, or several biological events at the same time, because the added light from several emitters can more easily overcome the high fluorescence background inherent to biological systems. Although important in their …


Energetic Effects Of Hole Transporting Materials On The Performance Of Organometal Halide Perovskite Photovoltaic Cells, So Min Park Jan 2017

Energetic Effects Of Hole Transporting Materials On The Performance Of Organometal Halide Perovskite Photovoltaic Cells, So Min Park

Theses and Dissertations--Chemistry

Efficient, inexpensive, lightweight and flexible solar cells are desired to help meet the world’s growing energy needs. Organometal halide perovskite (OMHP) photovoltaic (PV) cells have shown dramatic increases in solar cell efficiencies increase over the last 5 years. OMHP PV cells have attracted significant attention due to their broad absorption spectra, high electron and hole mobility, and low production cost. The interface between hole transporting layer (HTL) and perovskite thin films have a significant influence on charge transfer and overall solar cell performance. 2,2’,7,7’-tetrakis(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene (Spiro-OMeTAD) is a small molecule largely used as HTL in perovskite solar cells. However, this material …


Heterogeneous Base Metal Catalyzed Oxidative Depolymerization Of Lignin And Lignin Model Compounds, John Adam Jennings Jan 2017

Heterogeneous Base Metal Catalyzed Oxidative Depolymerization Of Lignin And Lignin Model Compounds, John Adam Jennings

Theses and Dissertations--Chemistry

With the dwindling availability of petroleum, focus has shifted to renewable energy sources such as lignocellulosic biomass. Lignocellulosic biomass is composed of three main constituents, lignin, cellulose and hemicellulose. Due to the low value of cellulosic ethanol, utilization of the lignin component is necessary for the realization of an economically sustainable biorefinery model. Once depolymerized, lignin has the potential to replace petroleum-derived molecules used as bulk and specialty aromatic chemicals. Numerous lignin depolymerization strategies focus on cleavage of β-aryl ether linkages, usually at high temperatures and under reductive conditions.

Alternatively, selective benzylic oxidation strategies have recently been explored for …


Application Of High-Resolution Accurate Mass (Hram) Mass Spectrometry For Analysis Of Lignin Model Compounds And The Post-Pretreatment Products, Fan Huang Jan 2017

Application Of High-Resolution Accurate Mass (Hram) Mass Spectrometry For Analysis Of Lignin Model Compounds And The Post-Pretreatment Products, Fan Huang

Theses and Dissertations--Chemistry

Lignin, one of main components in the woody cell walls, is a complex heterogeneous biopolymer, which provides structural support and transportation of water in plants. It is highly recalcitrant to degradation (both chemically and environmentally) and protects cellulose from being degraded/hydrolyzed. Due to the structural complexity of native lignin, complete characterization and elucidation of lignin’s structure remains very challenging. The overarching goal of this work is to develop mass spectrometry based analytical methods to contribute to a better understanding of lignin structures.

This dissertation will focus on the development and application of High-Resolution Accurate-Mass (HRAM) Mass Spectrometry (MS) as main …


Mechanisms Of Heterogeneous Oxidations At Model Aerosol Interfaces By Ozone And Hydroxyl Radicals, Elizabeth A. Pillar-Little Jan 2017

Mechanisms Of Heterogeneous Oxidations At Model Aerosol Interfaces By Ozone And Hydroxyl Radicals, Elizabeth A. Pillar-Little

Theses and Dissertations--Chemistry

Atmospheric aerosols play an important role in climate by scattering and absorbing radiation and by serving as cloud condensation nuclei. An aerosol’s optical or nucleation properties are driven by its chemical composition. Chemical aging of aerosols by atmospheric oxidants, such as ozone, alters the physiochemical properties of aerosol to become more hygroscopic, light absorbing, and viscous during transport. However the mechanism of these transformations is poorly understood. While ozone is a protective and beneficial atmospheric gas in the stratosphere, it is a potent greenhouse gas in the troposphere that traps heat near the Earth’s surface. It also impacts human heath …


Semiconductor Photocatalysis: Mechanisms, Photocatalytic Performances And Lifetime Of Redox Carriers, Ruixin Zhou Jan 2017

Semiconductor Photocatalysis: Mechanisms, Photocatalytic Performances And Lifetime Of Redox Carriers, Ruixin Zhou

Theses and Dissertations--Chemistry

Photocatalytic reactions mediated by semiconductors such as ZnS, TiO2, ZnO, etc. can harvest solar energy into chemical bonds, a process with important prebiotic and environmental chemistry applications. The recycling of CO2 into organic molecules (e.g., formate, methane, and methanol) facilitated by irradiated semiconductors such as colloidal ZnS nanoparticles has been demonstrated. ZnS can also drive prebiotic reactions from the reductive tricarboxylic acid (rTCA) cycle such as the reduction of fumarate to succinate. However, the mechanism of photoreduction by ZnS of the previous reaction has not been understood. Thus, this thesis reports the mechanisms for heterogeneous photocatalytic reductions …


Epigenetic Modifications To Cytosine And Alzheimer’S Disease: A Quantitative Analysis Of Post-Mortem Tissue, Elizabeth M. Ellison Jan 2017

Epigenetic Modifications To Cytosine And Alzheimer’S Disease: A Quantitative Analysis Of Post-Mortem Tissue, Elizabeth M. Ellison

Theses and Dissertations--Chemistry

Alzheimer’s disease (AD) is the most common form of dementia and the sixth leading cause of death in the United States, with no therapeutic option to slow or halt disease progression. Development of two characteristic pathologic lesions, amyloid beta plaques and neurofibrillary tangles, in the brain are associated with synaptic dysfunction and neuron loss leading to memory impairment and cognitive decline. Although mutations in genes involved in amyloid beta processing are linked to increased plaque formation in the inherited familial form of AD, the more common idiopathic form, termed sporadic AD, develops in the absence of gene mutations. In contrast, …