Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Agronomy and Crop Sciences

PDF

Selected Works

Soybean

Articles 1 - 2 of 2

Full-Text Articles in Entire DC Network

Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi Jan 2017

Candidate Perennial Bioenergy Grasses Have A Higher Albedo Than Annual Row Crops, Jesse N. Miller, Andy Vanloocke, Nuria Gomez-Casanovas, Carl J. Bernacchi

Andy VanLoocke

The production of perennial cellulosic feedstocks for bioenergy presents the potential to diversify regional economies and the national energy supply, while also serving as climate ‘regulators’ due to a number of biogeochemical and biogeophysical differences relative to row crops. Numerous observational and model-based approaches have investigated biogeochemical trade-offs, such as increased carbon sequestration and increased water use, associated with growing cellulosic feedstocks. A less understood aspect is the biogeophysical changes associated with the difference in albedo (a), which could alter the local energy balance and cause local to regional cooling several times larger than that associated with offsetting carbon. Here, …


Modeling Long-Term Corn Yield Response To Nitrogen Rate And Crop Rotation, Laila A. Puntel, John E. Sawyer, Daniel Barker, Ranae N. Dietzel, Hanna Poffenbarger, Michael J. Castellano, Kenneth J. Moore, Peter Thorburn, Sotirios Archontoulis Nov 2016

Modeling Long-Term Corn Yield Response To Nitrogen Rate And Crop Rotation, Laila A. Puntel, John E. Sawyer, Daniel Barker, Ranae N. Dietzel, Hanna Poffenbarger, Michael J. Castellano, Kenneth J. Moore, Peter Thorburn, Sotirios Archontoulis

John E. Sawyer

Improved prediction of optimal N fertilizer rates for corn (Zea mays L.) can reduce N losses and increase profits. We tested the ability of the Agricultural Production Systems sIMulator (APSIM) to simulate corn and soybean (Glycine max L.) yields, the economic optimum N rate (EONR) using a 16-year field-experiment dataset from central Iowa, USA that included two crop sequences (continuous corn and soybean-corn) and five N fertilizer rates (0, 67, 134, 201, and 268 kg N ha-1) applied to corn. Our objectives were to: (a) quantify model prediction accuracy before and after calibration, and report calibration steps; (b) compare crop …