Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Drought- Conditioning Of Quaking Aspen (Populus Tremuloides Michx.) Seedlings During Nursery Production Modifies Seedling Anatomy And Physiology, Joshua L. Sloan, Owen T. Burney, Jeremiah R. Pinto Sep 2020

Drought- Conditioning Of Quaking Aspen (Populus Tremuloides Michx.) Seedlings During Nursery Production Modifies Seedling Anatomy And Physiology, Joshua L. Sloan, Owen T. Burney, Jeremiah R. Pinto

Aspen Bibliography

In the western US, quaking aspen (Populus tremuloides Michx.) regenerates primarily by root suckers after disturbances such as low to moderate severity fires. Planting aspen seedlings grown from seed may provide a mechanism to improve restoration success and genetic diversity on severely disturbed sites. However, few studies have examined the use of container-grown aspen seedlings for restoration purposes from both the outplanting and nursery production perspective. Thus, the purpose of this novel study was to examine how alterations in irrigation levels during nursery production across three seed sources would impact seedling performance attributes on harsh, dry outplanting sites. Irrigation …


Exploring The Potential Of Nitric Oxide And Hydrogen Sulfide (Nosh)-Releasing Synthetic Compounds As Novel Priming Agents Against Drought Stress In Medicago Sativa Plants, Chrystalla Antoniou, Rafaella Xenofontos, Giannis Chatzimichail, Anastasis Christou, Khosrow Kashfi, Vasileios Fotopoulos Jan 2020

Exploring The Potential Of Nitric Oxide And Hydrogen Sulfide (Nosh)-Releasing Synthetic Compounds As Novel Priming Agents Against Drought Stress In Medicago Sativa Plants, Chrystalla Antoniou, Rafaella Xenofontos, Giannis Chatzimichail, Anastasis Christou, Khosrow Kashfi, Vasileios Fotopoulos

Publications and Research

Land plants are continuously exposed to multiple abiotic stress factors like drought, heat, and salinity. Nitric oxide (NO) and hydrogen sulfide (H2S) are two well-examined signaling molecules that act as priming agents, regulating the response of plants to stressful conditions. Several chemical donors exist that provide plants with NO and H2S separately. NOSH is a remarkable novel donor as it can donate NO and H2S simultaneously to plants, while NOSH-aspirin additionally provides the pharmaceutical molecule acetylsalicylic acid. The current study aimed to investigate the potential synergistic effect of these molecules in drought-stressed Medicago sativa L. plants by following a pharmacological …


Assessing Agricultural Risk Management Using Historic Crop Insurance Loss Data Over The Ogallala Aquifer, Julian Reyes, Emile Elias, Erin M.K. Haacker, Amy Kremen, Lauren Parker, Caitlin Rottler Jan 2020

Assessing Agricultural Risk Management Using Historic Crop Insurance Loss Data Over The Ogallala Aquifer, Julian Reyes, Emile Elias, Erin M.K. Haacker, Amy Kremen, Lauren Parker, Caitlin Rottler

Department of Earth and Atmospheric Sciences: Faculty Publications

Much of the agricultural production in the Ogallala Aquifer region relies on groundwater for irrigation. In addition to declining water levels, weather and climate-driven events affect crop yields and revenues. Crop insurance serves as a risk management tool to mitigate these perils. Here, we seek to understand what long-term crop insurance loss data can tell us about agricultural risk management in the Ogallala. We assess patterns and trends in crop insurance loss data from the U.S. Department of Agriculture Risk Management Agency. Indemnities, or insurance payments, totaled $22 billion from 1989–2017 for the 161 counties that overlie the Ogallala Aquifer. …


Leveraging Genome-Enabled Growth Models To Study Shoot Growth Responses To Water Deficit In Rice, Malachy T. Campbell, Alexandre Grondin, Harkamal Walia, Gota Morota Jan 2020

Leveraging Genome-Enabled Growth Models To Study Shoot Growth Responses To Water Deficit In Rice, Malachy T. Campbell, Alexandre Grondin, Harkamal Walia, Gota Morota

Department of Agronomy and Horticulture: Faculty Publications

lucidating genotype-by-environment interactions and partitioning its contribution to phenotypic variation remains a challenge for plant scientists. We propose a framework that utilizes genome-wide markers to model genotype-specific shoot growth trajectories as a function of time and soil water availability. A rice diversity panel was phenotyped daily for 21 d using an automated, high-throughput image-based, phenotyping platform that enabled estimation of daily shoot biomass and soil water content. Using these data, we modeled shoot growth as a function of time and soil water content, and were able to determine the time point where an inflection in the growth trajectory occurred. We …


The Lateral Root Density Gene Regulates Root Growth During Water Stress In Wheat, Dante F. Placido, Jaspreet Sandhu, Shirley Sato, Natalya Nersesian, Truyen Quach, Thomas Clemente, Paul Staswick, Harkamal Walia Jan 2020

The Lateral Root Density Gene Regulates Root Growth During Water Stress In Wheat, Dante F. Placido, Jaspreet Sandhu, Shirley Sato, Natalya Nersesian, Truyen Quach, Thomas Clemente, Paul Staswick, Harkamal Walia

Department of Agronomy and Horticulture: Faculty Publications

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced …


The Lateral Root Density Gene Regulates Root Growth During Water Stress In Wheat, Dante F. Placido, Jaspreet Sandhu, Shirley Sato, Natalya Nersesian, Truyen Quach, Thomas E. Clemente, Paul E. Staswick, Harkamal Walia Jan 2020

The Lateral Root Density Gene Regulates Root Growth During Water Stress In Wheat, Dante F. Placido, Jaspreet Sandhu, Shirley Sato, Natalya Nersesian, Truyen Quach, Thomas E. Clemente, Paul E. Staswick, Harkamal Walia

Department of Agronomy and Horticulture: Faculty Publications

Drought stress is the major limiting factor in agriculture. Wheat, which is the most widely grown crop in the world, is predominantly cultivated in drought-prone rainfed environments. Since roots play a critical role in water uptake, root response to water limitations is an important component for enhancing wheat adaptation. In an effort to discover novel genetic sources for improving wheat adaptation, we characterized a wheat translocation line with a chromosomal segment from Agropyron elongatum, a wild relative of wheat, which unlike common wheat maintains root growth under limited-water conditions. By exploring the root transcriptome data, we found that reduced …