Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Entire DC Network

Development Of Cal Poly's Shock Table, Christopher D. Risner Dec 2016

Development Of Cal Poly's Shock Table, Christopher D. Risner

Master's Theses

Shock is one of the environmental tests that a spacecraft must pass before being cleared for launch. Shock testing poses a challenging data acquisition issue and careful selection of equipment is crucial to creating a successful shock test facility. Cal Poly’s CubeSat programs can currently perform all environmental testing other than shock themselves, so a quality shock table would be useful. Previous groups of students had developed a shock table, and this paper details the improvement and characterization of that shock table’s behavior. Several adjustable parameters were tested and documented to discover trends in the shock table’s response to an …


Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield Dec 2016

Assessment Of Asymmetric Flight On Solar Uas, Eric Belfield

Master's Theses

An investigation was conducted into the feasibility of using an unconventional flight technique, asymmetric flight, to improve overall efficiency of solar aircraft. In this study, asymmetric flight is defined as steady level flight in a non-wings-level state in- tended to improve solar incidence angle. By manipulating aircraft orientation through roll angle, solar energy collection is improved but aerodynamic efficiency is worsened due to the introduction of additional trim drag. A point performance model was devel- oped to investigate the trade-off between improvement in solar energy collection and additional drag associated with asymmetric flight. A mission model with a focus on …


Evaluation Of Efficiency Of Various Materials To Shield From Radiation In Space Using The Monte Carlo Transport Code Called Fluka, Roman Savinov Dec 2016

Evaluation Of Efficiency Of Various Materials To Shield From Radiation In Space Using The Monte Carlo Transport Code Called Fluka, Roman Savinov

Master's Theses

The purpose of this study is to improve spacecraft shielding from radiation in space. It focuses on the evaluation of shielding efficiency of different materials. The efficiency of a shield is evaluated by the dose profile within the shield and the amount of dose absorbed by a target using the Monte Carlo transport code called FLUKA. The output of this code is validated by recreating the experiments from published papers and comparing the results. Once the FLUKA’s output is validated, the efficiency of sixteen materials, subject to SPE and GCR sources, are evaluated. The efficiency comparison is made by fixing …


Integration And Qualification Of The P-Pods On The Vega Maiden Flight, Ryan Nugent Dec 2016

Integration And Qualification Of The P-Pods On The Vega Maiden Flight, Ryan Nugent

Master's Theses

On February 13, 2012, California Polytechnic State University, San Luis Obispo flew three Poly-Picosatellite Orbital Deployers (P-PODs), carrying seven European University CubeSats sponsored by the European Space Agency (ESA), on the Vega Maiden Flight. This was the first time CubeSats shared a ride to space with other payloads on an ESA-owned launch opportunity. In order to meet launch requirements, it must be proven through proper documentation that the P-POD would operate properly and not interfere with the launch vehicle or other payloads on the mission. This thesis outlines the program flow, required documentation, and issues encountered during the launch campaign …


Experimentation Of Mode I And Mode Ii Fracture Of Uni-Directional Composites And Finite Element Analysis Of Mode I Fracture Using Cohesive Contact, Joseph Daniel Garrett Sep 2016

Experimentation Of Mode I And Mode Ii Fracture Of Uni-Directional Composites And Finite Element Analysis Of Mode I Fracture Using Cohesive Contact, Joseph Daniel Garrett

Master's Theses

As the use of fiber-reinforced composites has increased over the decades, so has the need to understand the complexity of their failure mechanisms as engineers seek to improve the damage tolerance of composite laminated structures. One of the most prevalent and limiting mode of failure within composite laminates is delamination, since it not only reduces a structures stiffness and strength, but can be very difficult to detect without the use of special non-destructive equipment. Industry testing organizations have utilized several fracture tests in order to characterize the fracture toughness of composite materials under different loading conditions. For this research, ASTM …


Risk-Based Approach To Assessment Of Advanced Technologies For Conceptual Design, Adipratnia Asmady Aug 2016

Risk-Based Approach To Assessment Of Advanced Technologies For Conceptual Design, Adipratnia Asmady

Master's Theses

The conceptual design phase of an aerospace system development program is typically characterized by short duration and relatively limited resources, yet design decisions are made that have critical implications on program risk. To address the more aggressive requirements, one of these decisions is the selection of advanced technologies. System developers need to assess advanced technologies early on, but are faced with uncertainties surrounding the potential net benefits. The concept introduced in this study is uncertainty characterization as a way to better understand the associated risk. A framework was developed to guide the interaction between the technology developer and the system …


Subsystem Failure Analysis Within The Horizon Simulation Framework, Ian M. Lunsford Jun 2016

Subsystem Failure Analysis Within The Horizon Simulation Framework, Ian M. Lunsford

Master's Theses

System design is an inherently expensive and time consuming process. Engineers are constantly tasked to investigate new solutions for various programs. Model-based systems engineering (MBSE) is an up and coming successful method used to reduce the time spent during the design process. By utilizing simulations, model-based systems engineering can verify high-level system requirements quickly and at low cost early in the design process. The Horizon Simulation Framework, or HSF, provides the capability of simulating a system and verifying the system performance. This paper outlines an improvement to the Horizon Simulation Framework by providing information to the user regarding schedule failures …


An Iteration On The Horizon Simulation Framework To Include .Net And Python Scripting, Morgan Yost Jun 2016

An Iteration On The Horizon Simulation Framework To Include .Net And Python Scripting, Morgan Yost

Master's Theses

Modeling and Simulation is a crucial element of the aerospace engineering design pro- cess because it allows designers to thoroughly test their solution before investing in the resources to create it. The Horizon Simulation Framework (HSF) v3.0 is an aerospace modeling and simulation tool that allows the user to verify system level requirements in the early phases of the design process. A low fidelity model of the system that is created by the user is exhaustively tested within the built-in Day-in-the-Life simulator to provide useful information in the form of failed requirements, system bottle necks and leverage points, and potential …


Sysml Based Cubesat Model Design And Integration With The Horizon Simulation Framework, Shaun Luther Jun 2016

Sysml Based Cubesat Model Design And Integration With The Horizon Simulation Framework, Shaun Luther

Master's Theses

This thesis examines the feasibility of substituting the system input script of Cal Poly’s Horizon Simulation Framework (HSF) with a Model Based Systems Engineering (MBSE) model designed with the Systems Modeling Language (SysML). A concurrent student project, SysML Output Interface Creation for the Horizon Simulation Framework, focused on design of the HSF Translator Plugin which converts SysML models to an HSF specific XML format. A SysML model of the HSF test case, Aeolus, was designed. The original Aeolus HSF input script and the translated SysML input script retained the format and dependency structure required by HSF. Both input scripts …


A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano Jun 2016

A Solution To The Circular Restricted N Body Problem In Planetary Systems, Jay R. Iuliano

Master's Theses

This thesis is a brief look at a new solution to a problem that has been approached in many different ways in the past - the N body problem. By focusing on planetary systems, satellite dynamics can be modeled in a fashion similar to the Circular Restricted Three Body Problem (CR3BP) with the Circular Restricted N Body Problem (CRNBP). It was found that this new formulation of the dynamics can then utilize the tools created from all the research into the CR3BP to reassess the possibility of different complex trajectories in systems where there are more than just two large …


Design, Manufacture, Dynamic Testing, And Finite Element Analysis Of A Composite 6u Cubesat, Yanina Soledad Hallak Jun 2016

Design, Manufacture, Dynamic Testing, And Finite Element Analysis Of A Composite 6u Cubesat, Yanina Soledad Hallak

Master's Theses

CubeSats, specially the 6U standard, is nowadays the tendency where many developers point towards. The upscaling size of the standard and payloads entail the increase of the satellite overall mass. Composite materials have demonstrated the ability to fulfill expectations like reducing structural masses, having been applied to different types of spacecraft, including small satellites.

This Thesis is focused on designing, manufacturing, and dynamic testing of a 6U CubeSat made of carbon fiber, fiberglass, and aluminum.

The main objective of this study was obtaining a mass reduction of a 6U CubeSat structure, maintaining the stiffness and strength. Considering the thermal effects …


A Study Of Constant Voltage Anemometry Frequency Response, Alex D. Powers Jun 2016

A Study Of Constant Voltage Anemometry Frequency Response, Alex D. Powers

Master's Theses

The development of the constant voltage anemometer (CVA) for the boundary layer data system (BLDS) has been motivated by a need for the explicit autonomous measurement of velocity fluctuations in the boundary layer. The frequency response of a sensor operated by CVA has been studied analytically and experimentally. The thermal lag of the sensor is quantified by a time constant, MCVA. When the time constant is decreased, the half-amplitude cut-off frequency, fCVA, is increased, thereby decreasing the amount of attenuation during measurements. In this thesis, three main approaches have been outlined in theory and tested experimentally …


Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa Jun 2016

Autonomous Formation Flying And Proximity Operations Using Differential Drag On The Mars Atmosphere, Andres Eduardo Villa

Master's Theses

Due to mass and volume constraints on planetary missions, the development of control techniques that do not require fuel are of big interest. For those planets that have a dense enough atmosphere, aerodynamic drag can play an important role. The use of atmospheric differential drag for formation keeping was first proposed by Carolina L. Leonard in 1986, and has been proven to work in Earth atmosphere by many missions. Moreover, atmospheric drag has been used in the Mars atmosphere as aerobraking technique to decelerate landing vehicles, and to circularize the orbit of the spacecraft. Still, no literature was available related …


Effects Of Curing Cycle And Loading Rates On The Bearing Stress Of Double Shear Composite Joints, Mateja Andrejic Apr 2016

Effects Of Curing Cycle And Loading Rates On The Bearing Stress Of Double Shear Composite Joints, Mateja Andrejic

Master's Theses

In the last few decades, there has been a shift to using more lightweight materials for the potential of fuel consumption reduction. In the Aerospace Industry, conventional metal structures are being replaced by advanced composite structures. The major advantage of an advanced composite structure is the huge reduction in the number of parts and joints required. Also composite materials provide better resistance to creep, corrosion, and fatigue. However, one cannot eliminate all the joints and attachments in an aircraft’s structure. Eliminating structural joints is impractical in present-day aircraft because of the requirements for inspection, manufacturing breaks, assembly and equipment access, …


Effect Of Low Velocity Impact On The Vibrational Behavior Of A Composite Wing, Richard M. De Luna Mar 2016

Effect Of Low Velocity Impact On The Vibrational Behavior Of A Composite Wing, Richard M. De Luna

Master's Theses

Impact strength is one of the most important structural properties for a designer to consider, but it is often the most difficult to quantify or measure. A major concern for composite structures in the field is the effect of foreign objects striking composites because the damage is often undetectable by visual inspection. The objective for this study was to determine the effectiveness of using dynamic testing to identify the existence of damage in a small scale composite wing design. Four different impact locations were tested with three specimens per location for a total of 12 wings manufactured. The different impact …