Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 16 of 16

Full-Text Articles in Entire DC Network

Anisoplanatic Electromagnetic Image Propagation Through Narrow Or Extended Phase Turbulence Using Altitude-Dependent Structure Parameter, Monish Ranjan Chatterjee, Ali Mohamed Oct 2016

Anisoplanatic Electromagnetic Image Propagation Through Narrow Or Extended Phase Turbulence Using Altitude-Dependent Structure Parameter, Monish Ranjan Chatterjee, Ali Mohamed

Electrical and Computer Engineering Faculty Publications

The effects of turbulence on anisoplanatic imaging are often modeled through the use of a sequence of phase screens distributed along the optical path. We implement the split-step wave algorithm to examine turbulence-corrupted images.


Automatic Building Change Detection In Wide Area Surveillance, Paheding Sidike, Almabrok Essa, Fatema Albalooshi, Vijayan K. Asari, Varun Santhaseelan Jun 2015

Automatic Building Change Detection In Wide Area Surveillance, Paheding Sidike, Almabrok Essa, Fatema Albalooshi, Vijayan K. Asari, Varun Santhaseelan

Electrical and Computer Engineering Faculty Publications

We present an automated mechanism that can detect and characterize the building changes by analyzing airborne or satellite imagery.

The proposed framework can be categorized into three stages: building detection, boundary extraction and change identification. To detect the buildings, we utilize local phase and local amplitude from monogenic signal to extract building features for addressing issues of varying illumination. Then a support vector machine with Radial basis kernel is used for classification. In the boundary extraction stage, a level-set function with self-organizing map based segmentation method is used to find the building boundary and compute physical area of the building …


Kalman Filtering With State Constraints: A Survey Of Linear And Nonlinear Algorithms, Daniel J. Simon Aug 2010

Kalman Filtering With State Constraints: A Survey Of Linear And Nonlinear Algorithms, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are powerful tools for state estimation, we might have information about a system that the Kalman filter …


Analytic Confusion Matrix Bounds For Fault Detection And Isolation Using A Sum-Of-Squared-Residuals Approach, Daniel J. Simon, Donald L. Simon Jun 2010

Analytic Confusion Matrix Bounds For Fault Detection And Isolation Using A Sum-Of-Squared-Residuals Approach, Daniel J. Simon, Donald L. Simon

Electrical and Computer Engineering Faculty Publications

Given a system which can fail in 1 of n different ways, a fault detection and isolation (FDI) algorithm uses sensor data to determine which fault is the most likely to have occurred. The effectiveness of an FDI algorithm can be quantified by a confusion matrix, also called a diagnosis probability matrix, which indicates the probability that each fault is isolated given that each fault has occurred. Confusion matrices are often generated with simulation data, particularly for complex systems. In this paper, we perform FDI using sum-of-squared residuals (SSRs). We assume that the sensor residuals are s-independent and Gaussian, which …


Constrained Kalman Filtering Via Density Function Truncation For Turbofan Engine Health Estimation, Daniel J. Simon, Donald L. Simon Feb 2010

Constrained Kalman Filtering Via Density Function Truncation For Turbofan Engine Health Estimation, Daniel J. Simon, Donald L. Simon

Electrical and Computer Engineering Faculty Publications

Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This article develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the probability density function (PDF) of the Kalman filter estimate at the known constraints and then computes the constrained …


Biogeography-Based Optimization, Daniel J. Simon Dec 2008

Biogeography-Based Optimization, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Biogeography is the study of the geographical distribution of biological organisms. Mathematical equations that govern the distribution of organisms were first discovered and developed during the 1960s. The mindset of the engineer is that we can learn from nature. This motivates the application of biogeography to optimization problems. Just as the mathematics of biological genetics inspired the development of genetic algorithms (GAs), and the mathematics of biological neurons inspired the development of artificial neural networks, this paper considers the mathematics of biogeography as the basis for the development of a new field: biogeography-based optimization (BBO). We discuss natural biogeography and …


A Comparison Of Filtering Approaches For Aircraft Engine Health Estimation, Daniel J. Simon Jan 2008

A Comparison Of Filtering Approaches For Aircraft Engine Health Estimation, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Different approaches for the estimation of the states of linear dynamic systems are commonly used, the most common being the Kalman filter. For nonlinear systems, variants of the Kalman filter are used. Some of these variants include the LKF (linearized Kalman filter), the EKF (extended Kalman filter), and the UKF (unscented Kalman filter). With the LKF and EKF, performance varies depending on how often Jacobians (partial derivative matrices) are updated. In other words, we see a tradeoff between computational effort and filtering performance. With the unscented Kalman filter, Jacobians are not calculated but computational effort is typically high due to …


Kalman Filtering With Inequality Constraints For Turbofan Engine Health Estimation, Daniel J. Simon, Donald L. Simon May 2006

Kalman Filtering With Inequality Constraints For Turbofan Engine Health Estimation, Daniel J. Simon, Donald L. Simon

Electrical and Computer Engineering Faculty Publications

Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state-variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. Thus, two analytical methods to incorporate state-variable inequality constraints into the Kalman filter are now derived. The first method is a general technique that uses hard constraints to enforce inequalities on the state-variable estimates. The resultant filter is a combination …


A Game Theory Approach To Constrained Minimax State Estimation, Daniel J. Simon Feb 2006

A Game Theory Approach To Constrained Minimax State Estimation, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

This paper presents a game theory approach to the constrained state estimation of linear discrete time dynamic systems. In the application of state estimators, there is often known model or signal information that is either ignored or dealt with heuristically. For example, constraints on the state values (which may be based on physical considerations) are often neglected because they do not easily fit into the structure of the state estimator. This paper develops a method for incorporating state equality constraints into a minimax state estimator. The algorithm is demonstrated on a simple vehicle tracking simulation.


Galileo Probe, Monish Ranjan Chatterjee Jan 2006

Galileo Probe, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

The Galileo mission to Jupiter was formally approved by the United States Congress in 1977, several years before the space shuttle Columbia made its maiden flight into Earth orbit. The mission was a cooperative project involving scientists and engineers from the United States, Germany, Canada, Great Britain, France, Sweden, Spain, and Australia. Even though the Voyager 1 and Voyager 2 spacecraft had performed flybys of planet Jupiter and its sixteen moons in 1979, the Galileo mission was envisioned to initiate several novel observations of Jupiter, the most massive gas planet of the solar system, and its principal moons, and conduct …


Data Smoothing And Interpolation Using Eighth-Order Algebraic Splines, Daniel J. Simon Apr 2004

Data Smoothing And Interpolation Using Eighth-Order Algebraic Splines, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

A new type of algebraic spline is used to derive a filter for smoothing or interpolating discrete data points. The spline is dependent on control parameters that specify the relative importance of data fitting and the derivatives of the spline. A general spline of arbitrary order is first formulated using matrix equations. We then focus on eighth-order splines because of the continuity of their first three derivatives (desirable for motor and robotics applications). The spline's matrix equations are rewritten to give a recursive filter that can be implemented in real time for lengthy data sequences. The filter is lowpass with …


Sum Normal Optimization Of Fuzzy Membership Functions, Daniel J. Simon Aug 2002

Sum Normal Optimization Of Fuzzy Membership Functions, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Given a fuzzy logic system, how can we determine the membership functions that will result in the best performance? If we constrain the membership functions to a certain shape (e.g., triangles or trapezoids) then each membership function can be parameterized by a small number of variables and the membership optimization problem can be reduced to a parameter optimization problem. This is the approach that is typically taken, but it results in membership functions that are not (in general) sum normal. That is, the resulting membership function values do not add up to one at each point in the domain. This …


Neil Armstrong, Monish Ranjan Chatterjee Jan 2002

Neil Armstrong, Monish Ranjan Chatterjee

Electrical and Computer Engineering Faculty Publications

In addition to his outstanding and pioneering contributions to the National Aeronautics and Space Administration’s (NASA) crewed spaceflight program, Armstrong served with distinction as a professor of aerospace engineering, chairman and director of several corporations, and member of presidential commissions.


Distributed Fault Tolerance In Optimal Interpolative Nets, Daniel J. Simon Nov 2001

Distributed Fault Tolerance In Optimal Interpolative Nets, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

The recursive training algorithm for the optimal interpolative (OI) classification network is extended to include distributed fault tolerance. The conventional OI Net learning algorithm leads to network weights that are nonoptimally distributed (in the sense of fault tolerance). Fault tolerance is becoming an increasingly important factor in hardware implementations of neural networks. But fault tolerance is often taken for granted in neural networks rather than being explicitly accounted for in the architecture or learning algorithm. In addition, when fault tolerance is considered, it is often accounted for using an unrealistic fault model (e.g., neurons that are stuck on or off …


Design And Rule Base Reduction Of A Fuzzy Filter For The Estimation Of Motor Currents, Daniel J. Simon Oct 2000

Design And Rule Base Reduction Of A Fuzzy Filter For The Estimation Of Motor Currents, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Fuzzy systems have been used extensively and successfully in control systems over the past few decades, but have been applied much less often to filtering problems. This is somewhat surprising in view of the dual relationship between control and estimation. This paper discusses and demonstrates the application of fuzzy filtering to motor winding current estimation in permanent magnet synchronous motors. Motor winding current estimation is an important problem because in order to implement effective closed-loop control, a good estimation of the current is needed. Motor winding currents are notoriously noisy because of electrical noise in the motor drive. We use …


Gps Modeling For Designing Aerospace Vehicle Navigation Systems, John J. Dougherty, Hossny El-Sherief, Daniel J. Simon, Gary A. Whitmer Apr 1995

Gps Modeling For Designing Aerospace Vehicle Navigation Systems, John J. Dougherty, Hossny El-Sherief, Daniel J. Simon, Gary A. Whitmer

Electrical and Computer Engineering Faculty Publications

The complexity of the design of a Global Positioning System (GPS) user segment, as well as the performance demanded of the components, depends on user requirements such as total navigation accuracy. Other factors, for instance the expected satellite/vehicle geometry or the accuracy of an accompanying inertial navigation system can also affect the user segment design. Models of GPS measurements are used to predict user segment performance at various levels. Design curves are developed which illustrate the relationship between user requirements, the user segment design, and component performance.