Open Access. Powered by Scholars. Published by Universities.®

Digital Commons Network

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Entire DC Network

Parameter Determination And Experimental Validation Of A Wire Feed Additive Manufacturing Model, Kannan Suresh Kumar Jan 2015

Parameter Determination And Experimental Validation Of A Wire Feed Additive Manufacturing Model, Kannan Suresh Kumar

Masters Theses

“Laser metal deposition is an additive manufacturing method with great scope and robustness. The wire fed additive manufacturing method has great opportunities in space applications and other zero gravity manufacturing processes. Process parameters play an important role in controlling the complex phenomenon and obtaining an ideal manufactured part. These parameters can be efficiently determined using simulation tools which are highly essential in visualizing real world experiments, therefore saving time and experimental costs. The objective of this study is to develop a transient 3D model of laser aided wire feed metal deposition which realizes the heat transfer and fluid flow behavior …


Hybrid Manufacturing Process Of SicF/Sic Composite Using Preceramic Polymer, Robert Raymond Meinders Jan 2015

Hybrid Manufacturing Process Of SicF/Sic Composite Using Preceramic Polymer, Robert Raymond Meinders

Masters Theses

"Continuous fiber-reinforced silicon carbide (SiCf/SiC) ceramic composites have been increasingly used due to their high temperature strength and graceful failure mechanisms. A disadvantage is the high cost and lengthy production processes that are required to develop these materials. Polymer infiltration and pyrolysis (PIP) is one of the most attractive fabrication processes for composites due to shape flexibility, mass production and relatively low cost; however, the quality of material obtained by this method has been considered insufficient due to the microstructure defects of the material obtained. This study investigated a hybrid of multiple polymer manufacturing processes to maximize quality …


Uncertainty Quantification Of Turbulence Model Closure Coefficients For Transonic Wall-Bounded Flows, John Anthony Schaefer Jan 2015

Uncertainty Quantification Of Turbulence Model Closure Coefficients For Transonic Wall-Bounded Flows, John Anthony Schaefer

Masters Theses

"The goal of this work was to quantify the uncertainty and sensitivity of commonly used turbulence models in Reynolds-Averaged Navier-Stokes codes due to uncertainty in the values of closure coefficients for transonic, wall-bounded flows and to rank the contribution of each coefficient to uncertainty in various output flow quantities of interest. Specifically, uncertainty quantification of turbulence model closure coefficients was performed for transonic flow over an axisymmetric bump at zero degrees angle of attack and the RAE 2822 transonic airfoil at a lift coefficient of 0.744. Three turbulence models were considered: the Spalart-Allmaras Model, Wilcox (2006) k-ω Model, and the …


Adjoint-Based Airfoil Shape Optimization In Transonic Flow, Joe-Ray Gramanzini Jan 2015

Adjoint-Based Airfoil Shape Optimization In Transonic Flow, Joe-Ray Gramanzini

Masters Theses

"The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques …


Space-Based Relative Multitarget Tracking, Keith Allen Legrand Jan 2015

Space-Based Relative Multitarget Tracking, Keith Allen Legrand

Masters Theses

"Access to space has expanded dramatically over the past decade. The growing popularity of small satellites, specifically cubesats, and the following launch initiatives have resulted in exponentially growing launch numbers into low Earth orbit. This growing congestion in space has punctuated the need for local space monitoring and autonomous satellite inspection. This work describes the development of a framework for monitoring local space and tracking multiple objects concurrently in a satellite's neighborhood. The development of this multitarget tracking systems has produced collateral developments in numerical methods, relative orbital mechanics, and initial relative orbit determination.

This work belongs to a class …


Discrete-Time Neural Network Based State Observer With Neural Network Based Control Formulation For A Class Of Systems With Unmatched Uncertainties, Jason Michael Stumfoll Jan 2015

Discrete-Time Neural Network Based State Observer With Neural Network Based Control Formulation For A Class Of Systems With Unmatched Uncertainties, Jason Michael Stumfoll

Masters Theses

"An observer is a dynamic system that estimates the state variables of another system using noisy measurements, either to estimate unmeasurable states, or to improve the accuracy of the state measurements. The Modified State Observer (MSO) is a technique that uses a standard observer structure modified to include a neural network to estimate system states as well as system uncertainty. It has been used in orbit uncertainty estimation and atmospheric reentry uncertainty estimation problems to correctly estimate unmodeled system dynamics. A form of the MSO has been used to control a nonlinear electrohydraulic system with parameter uncertainty using a simplified …