Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

22,237 Full-Text Articles 26,622 Authors 11,464,292 Downloads 161 Institutions

All Articles in Mechanical Engineering

Faceted Search

22,237 full-text articles. Page 5 of 634.

Mad Jack Alpine Touring Model Design, Austin Gasbarra, Gillian Stargensky, Madeleine McCool, Brannon Smudz 2019 California Polytechnic State University, San Luis Obispo

Mad Jack Alpine Touring Model Design, Austin Gasbarra, Gillian Stargensky, Madeleine Mccool, Brannon Smudz

Mechanical Engineering

Skiing is a sport enjoyed by millions of people every year, yet ski boots are very uncomfortable and cost- prohibitive, resulting in a low conversion rate of first-time skiers to lifetime skiers. Additionally, Alpine Touring (AT) is seeing a surge in popularity as ski resorts become more expensive, but few companies are developing affordable products in this realm. Mad Jack Snow Sports has developed a product that they believe addresses some of the main issues associated with skiing, but they want to develop their product line further. The problem statement and scope state that the purpose of this project is ...


Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling 2019 California Polytechnic State University, San Luis Obispo

Critical Radius Of Insulation, Maria N. Ambrose, Samuel J. Sayre, Travis W. Martin, Matt T. Sterling

Mechanical Engineering

The critical radius of insulation is a counterintuitive concept within the study of heat transfer. The theory states that adding insulation to a cylindrical or spherical object will increase the rate of heat loss rather than decrease it, if the radius (thickness) of the insulation is at its “critical” value. The Critical Radius of Insulation Senior Project is designed to demonstrate this phenomenon to Heat Transfer students via a portable apparatus. The concept will be demonstrated with a cylindrical object which is heated by way of a separate voltage source. Thermocouples will display the temperature of the cylinder while insulation ...


Rapid Prediction Of Low-Boom And Aerodynamic Performance Of Supersonic Transport Aircraft Using Panel Methods, Ted N. Giblette 2019 Utah State University

Rapid Prediction Of Low-Boom And Aerodynamic Performance Of Supersonic Transport Aircraft Using Panel Methods, Ted N. Giblette

All Graduate Theses and Dissertations

The Utah State University Aerolab developed and tested a set of tools for rapid prediction of the loudness of a sonic boom generated by supersonic transport aircraft. This work supported a larger effort led by Texas A&M to investigate the use of adaptive aerostructures in lowering sonic boom loudness at off design conditions. Successful completion of this effort will improve the feasibility of supersonic commercial transport over land.

Funding was provided by a NASA University Leadership Initiative grant to several universities, including Utah State University, as well as industry partners to complete this work over a five year period ...


Bioresorbable Composite Stents For Enhanced Response Of Vascular Smooth Muscle Cells, Hozhabr Mozafari 2019 University of Nebraska-Lincoln

Bioresorbable Composite Stents For Enhanced Response Of Vascular Smooth Muscle Cells, Hozhabr Mozafari

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Formation of arterial plaque and stenosis is one of the main cardiovascular disease risk factors. Stenting is a popular approach to increase the inner diameter of the artery and provide an acceptable lumen gain. This is achieved by applying internal pressure to the arterial wall. Despite the desirable outcomes of this procedure, there are complexities and challenges that are being discussed among scholars in this area. Restenosis is one of these complications, in which smooth muscles cell start proliferation and remodeling in response of induced mechanical stresses. Another important issue is the placement of the stent and possible migration due ...


Nanothermomechanical Logic Gates For Thermal Computing, Ahmed Hamed 2019 University of Nebraska-Lincoln

Nanothermomechanical Logic Gates For Thermal Computing, Ahmed Hamed

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications require the development of alternative computing technologies. Thermal computing, data processing based on heat instead of electricity, is proposed as a practical alternative and opens a new scientific area at the interface between thermal and computational sciences.

We successfully developed thermal AND, OR and NOT logic gates, achieved through the coupling between near-field thermal radiation and MEMS thermal actuation. In the process, we developed two novel non-linear thermal ...


Magnetic Properties Of Nd-Fe-B Permanent Magnets Under Thermal Experimentation, Géraldine Houis 2019 University of Nebraska-Lincoln

Magnetic Properties Of Nd-Fe-B Permanent Magnets Under Thermal Experimentation, Géraldine Houis

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Neodymium-Iron-Boron (Nd-Fe-B) magnets were developed in the 1980s, and since then, they have appeared as a common component in many fields. From the industry to consumers or defense applications, from turbines, computers, cellphones to most audio systems, Nd-Fe-B magnets are present everywhere. But when Nd-Fe-B magnets are applied to the motors of electric vehicles and wind-turbine generators, their temperature rises, therefore Nd-Fe-B-Dy magnets are used. However, while the use of these magnets is common at low temperatures, their properties decrease dramatically with the increase of temperature. In this paper, the Nd-Fe-B-based samples used were prepared by using arc melting, melt ...


Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen 2019 Missouri University of Science and Technology

Publisher Correction: Pore Elimination Mechanisms During 3d Printing Of Metals (Nature Communications, (2019), 10, 1, (3088), 10.1038/S41467-019-10973-9), S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Qilin Guo, Lianghua Xiong, Cang Zhao, Mimglei Qu, Luis I. Escano, Xianghui Xiao, Kamel Fezzaa, Wes Everhart, Tao Sun, Lianyi Chen

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The original version of this Article contained an error in Fig. 4. The x-axis labels in Fig. 4a, b were incorrectly labelled 'Diameter (mm)', rather than the correct 'Diameter (µm)'. This has been corrected in both the PDF and HTML versions of the Article.


3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao 2019 Missouri University of Science and Technology

3d Janus Plasmonic Helical Nanoapertures For Polarization-Encrypted Data Storage, Yang Chen, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Helical structures have attracted considerable attention due to their inherent optical chirality. Here, we report a unique type of 3D Janus plasmonic helical nanoaperture with direction-controlled polarization sensitivity, which is simply fabricated via the one-step grayscale focused ion beam milling method. Circular dichroism in transmission of as large as 0.72 is experimentally realized in the forward direction due to the spin-dependent mode coupling process inside the helical nanoaperture. However, in the backward direction, the nanoaperture acquires giant linear dichroism in transmission of up to 0.87. By encoding the Janus metasurface with the two nanoaperture enantiomers having specified rotation ...


Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For full list of authors, see publisher's website. 2019 Missouri University of Science and Technology

Pore Elimination Mechanisms During 3d Printing Of Metals, S. Mohammad H. Hojjatzadeh, Niranjan D. Parab, Wentao Yan, Lianyi Chen, For Full List Of Authors, See Publisher's Website.

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser powder bed fusion (LPBF) is a 3D printing technology that can print metal parts with complex geometries without the design constraints of traditional manufacturing routes. However, the parts printed by LPBF normally contain many more pores than those made by conventional methods, which severely deteriorates their properties. Here, by combining in-situ high-speed high-resolution synchrotron x-ray imaging experiments and multi-physics modeling, we unveil the dynamics and mechanisms of pore motion and elimination in the LPBF process. We find that the high thermocapillary force, induced by the high temperature gradient in the laser interaction region, can rapidly eliminate pores from the ...


Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao 2019 Missouri University of Science and Technology

Orbital Angular Momentum Transformation Of Optical Vortex With Aluminum Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The orbital angular momentum (OAM) transformation of optical vortex is realized upon using aluminum metasurfaces with phase distributions derived from the caustic theory. The generated OAM transformation beam has the well-defined Bessel-like patterns with multiple designed topological charges from -1 to +2.5 including both the integer-order and fractional-order optical vortices along the propagation. The detailed OAM transformation process is observed in terms of the variations of both beam intensity and phase profiles. The dynamic distributions of OAM mode density in the transformation are further analyzed to illustrate the conservation of the total OAM. The demonstration of transforming OAM states ...


Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao 2019 Missouri University of Science and Technology

Spontaneous Emission Rate Enhancement With Aperiodic Thue-Morse Multilayer, Ling Li, Cherian J. Mathai, Shubhra Gangopadhyay, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The emergence of multilayer metamaterials in the research field of enhancing spontaneous emission rates has recently received extensive attention. Previous research efforts mostly focus on periodic metal-dielectric multilayers in hyperbolic dispersion region; however, the influence of lattice order in subwavelength multilayers on spontaneous emission is rarely studied. Here, we observe the stronger Purcell enhancement of quantum dots coupled to the aperiodic metal-dielectric multilayer with Thue-Morse lattice order from elliptical to hyperbolic dispersion regions, compared to the periodic multilayer with the same metal filling ratio. This work demonstrates the potential of utilizing quasiperiodic metamaterial nanostructures to engineer the local density of ...


Generation Of Polarization Singularities With Geometric Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao 2019 Missouri University of Science and Technology

Generation Of Polarization Singularities With Geometric Metasurfaces, Yuchao Zhang, Xiaodong Yang, Jie Gao

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The polarization singularities are directly generated by using plasmonic metasurfaces with the geometric phase profiles designed to form the Poincaré beams. Different morphologies of polarization topological structures of lemon, star, monstar, spiral, dipole and quadrupole are created by the superpositions of Laguerre-Gauss modes with different orders under orthogonal circular or linear polarization basis. The polarization ellipse patterns and topological features of the produced optical vector fields are analyzed to reveal the properties of the polarization singularities of C-points and L-lines, and the orbital angular momentum states are also measured. The demonstrated polarization singularities generated from the geometric metasurfaces will promise ...


Energy And Exergy Analysis Of A Novel Multiple-Effect Vapor Chamber Distillation System For High-Salinity Wastewater Treatment, Hamidreza Shabgard, Ramkumar Parthasarathy, Ben Xu 2019 University of Oklahoma

Energy And Exergy Analysis Of A Novel Multiple-Effect Vapor Chamber Distillation System For High-Salinity Wastewater Treatment, Hamidreza Shabgard, Ramkumar Parthasarathy, Ben Xu

Mechanical Engineering Faculty Publications and Presentations

A novel modular thermally-driven multiple-effect vapor chamber distillation (MVCD) system is presented for compact and portable desalination applications. The MVCD system consists of several vapor chambers connected in series with the condenser section of the upstream vapor chambers serving as the evaporator section of the following effect. A heat transfer model accounting for the major thermal resistances was developed to predict the heat transfer and distilled water production rates. A mass transfer analysis was performed to evaluate the effect of the accumulation of the non-condensable gasses within the chambers. An exergy analysis was also conducted to quantify the efficiency of ...


Damage Resistance And Tolerance Of 3d Woven Composites, Justin T. McDermott 2019 University of Maine

Damage Resistance And Tolerance Of 3d Woven Composites, Justin T. Mcdermott

Electronic Theses and Dissertations

Composite materials have been adopted into primary aircraft structures by virtue of their great strength-to-weight and stiffness-to-weight ratios, fatigue insensitivity, and corrosion resistance. These characteristics are leveraged by aircraft designers to deliver improved fuel effciency and reduced scheduled maintenance burdens for their customers. These benefits have been impressively realized in the Boeing 787 and Airbus A350 XWB, with airframes utilizing about 50% composites by weight. Tempering these successes, however, are the inherent vulnerabilities of carbon-fiber reinforced composites. When compared to conventional metallic structure, composite laminates are more sensitive to stress concentrations at mechanical fastenings and damage due to low-velocity impact ...


Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner 2019 University of Arkansas, Fayetteville

Exploring Convergence Of Snake Skin-Inspired Texture Designs And Additive Manufacturing For Mechanical Traction, Catherine Sue Tiner

Theses and Dissertations

This research focuses on the understanding, development, and additive manufacture of a 3D printed snake skin-inspired texture pattern. The design functionalities of snake skin were determined through the study of the snake species Python Regius otherwise known as the ball python. Each scale of a snake has hierarchical texture with hexagonal macro-patterns aligned on the ventral surface of the skin with overriding anisotropic micro textured patterns such as denticulations and fibrils. Using a laser-powder bed fusion (L-PBF) process, 420 stainless steel samples were 3D printed which closely resemble the above described directional texture of natural snake skin. This printed surface ...


Investigation Into The Thermodynamics And Kinetics Of The Binding Of Cu2+ And Pb2+ To Tis2 Nanoparticles Synthesized Using A Solvothermal Process, Jesus Cantu, John Valle, Kenneth Flores, Diego Gonzalez, Carolina Valdes, Jorge Lopez, Victoria Padilla, Mataz Alcoutlabi, Jason Parsons 2019 The University of Texas Rio Grande Valley

Investigation Into The Thermodynamics And Kinetics Of The Binding Of Cu2+ And Pb2+ To Tis2 Nanoparticles Synthesized Using A Solvothermal Process, Jesus Cantu, John Valle, Kenneth Flores, Diego Gonzalez, Carolina Valdes, Jorge Lopez, Victoria Padilla, Mataz Alcoutlabi, Jason Parsons

Mechanical Engineering Faculty Publications and Presentations

In the present study, titanium (IV) sulfide (TiS2) was synthesized and investigated for the removal of Cu2+ and Pb2+ ions from aqueous solutions. TiS2 nanoparticles synthesized through a solvothermal synthesis were characterized using x-ray diffraction (XRD) and scanning electron microscopy (SEM). The average particle size for the TiS2 material was determined to be 8.03 ± 0.98 nm from the diffraction pattern. Studies were performed to examine the effects of pH, temperature, time, and interfering ions on the binding of Cu2+ and Pb2+ to the TiS2. As well isotherm studies were performed to determine the binding capacity of TiS2 for ...


Accelerated Relaxation In Disordered Solids Under Cyclic Loading With Alternating Shear Orientation, Nikolai V. Priezjev 2019 Wright State University - Main Campus

Accelerated Relaxation In Disordered Solids Under Cyclic Loading With Alternating Shear Orientation, Nikolai V. Priezjev

Mechanical and Materials Engineering Faculty Publications

The effect of alternating shear orientation during cyclic loading on the relaxation dynamics in disordered solids is examined using molecular dynamics simulations. The model glass was initially prepared by rapid cooling from the liquid state and then subjected to cyclic shear along a single plane or periodically alternated in two or three dimensions. We showed that with increasing strain amplitude in the elastic range, the system is relocated to deeper energy minima. Remarkably, it was found that each additional alternation of the shear orientation in the deformation protocol brings the glass to lower energy states. The results of mechanical tests ...


Gearbox Baffle Optimization, Megan Arduin 2019 Western Michigan University

Gearbox Baffle Optimization, Megan Arduin

Master's Theses

Current literature reveals there is limited consensus on the placement of baffles within a gearbox to reduce churning losses. Thus, there is a need for a process to identify baffle clearances that result in maximum and minimum churning losses. There are two types of baffles: axial and radial. While both axial and radial baffles cause reductions in churning losses to various degrees, the focus is on the effect of radial baffles. The effect of a board (rectangular plate) baffle location on the churning losses of a single gear gearbox are evaluated using computational fluid dynamics (CFD) implemented in Ansys. Several ...


Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs 2019 Western Michigan University

Estimation Of The Fatigue Life Of Additively Manufactured Metallic Components Using Modified Strain Life Parameters Based On Surface Roughness, Peter Grohs

Master's Theses

In this study, a method is developed to estimate the effects of surface roughness on the fatigue life of additively manufactured titanium Ti6Al4V, aluminum 7075–T6, and steel 4340 alloys through modified strain life parameters using finite element analysis (FEA). This method is highly beneficial to the fatigue analysis of as-built additively manufactured metal components, which possess rough surfaces that reduce fatigue life significantly but are challenging to analyze directly using finite element simulation because of complex geometries, i.e., modeling an exact surface profile is arduous.

An effective stress concentration factor, incorporating roughness data, is defined to quantify their ...


Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang 2019 Missouri University of Science and Technology

Second-Harmonic Optical Vortex Conversion From Ws₂ Monolayer, Arindam Dasgupta, Jie Gao, Xiaodong Yang

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Wavelength, polarization and orbital angular momentum of light are important degrees of freedom for processing and encoding information in optical communication. Over the years, the generation and conversion of orbital angular momentum in nonlinear optical media has found many novel applications in the context of optical communication and quantum information processing. With that hindsight, here orbital angular momentum conversion of optical vortices through second-harmonic generation from only one atomically thin WS2 monolayer is demonstrated at room temperature. Moreover, it is shown that the valley-contrasting physics associated with the nonlinear optical selection rule in WS2 monolayer precisely determines the output circular ...


Digital Commons powered by bepress