Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

836 Full-Text Articles 1,490 Authors 259,328 Downloads 59 Institutions

All Articles in Polymer and Organic Materials

Faceted Search

836 full-text articles. Page 7 of 33.

Life Cycle Sustainability Analysis (Lcsa) Of Polymer-Based Piping For Plumbing Applications, Andy J. Rivas Bolivar 2017 James Madison University

Life Cycle Sustainability Analysis (Lcsa) Of Polymer-Based Piping For Plumbing Applications, Andy J. Rivas Bolivar

Senior Honors Projects, 2010-current

Water conveyance systems play a critical role in modern developed areas. Polymer pipes have been used for about a century, and their convenient physical properties have positioned polymers as the leading material in the piping industry. Having such influence in the market means that changes in current material selection and manufacturing could lead to significant reductions in the footprint associated with their products. Currently, there are no comparative lifecycle assessments that evaluate the different polymer selections commercially available, which makes it hard to determine what products have the least impact on the environment. Understanding how such impacts are relative to ...


Studies To Evaluate Methodologies Used For Determining Heavy Metal Content In Polyethylene Terephthalate Food Packaging, Bradley Goodlaxson 2017 Iowa State University

Studies To Evaluate Methodologies Used For Determining Heavy Metal Content In Polyethylene Terephthalate Food Packaging, Bradley Goodlaxson

Graduate Theses and Dissertations

Increased consumer awareness of contamination in food-contact packaging has raised global concerns due to the potential of environmental contamination from packaging upon disposal after the service lifetime. Contamination in virgin and recycled polymers used for food-contact packaging has necessitated the development of analytical methods that identify and quantify heavy metals. Heavy metal contaminants in food-contact plastics have the potential to cause health issues if leaching were to occur. Sample preparation and analytical methods were evaluated to quantify heavy metal content in polyethylene terephthalate (PET). Since PET is one of the most widely used polymers for food-contact applications, accurate quantification of ...


Quantifying Gauche Defects And Phase Evolution In Self-Assembled Monolayers Through Sessile Drops, Jiahao Chen, Boyce Chang, Stephanie Oyola-Reynoso, Zhengjia Wang, Martin M. Thuo 2017 Iowa State University

Quantifying Gauche Defects And Phase Evolution In Self-Assembled Monolayers Through Sessile Drops, Jiahao Chen, Boyce Chang, Stephanie Oyola-Reynoso, Zhengjia Wang, Martin M. Thuo

Materials Science and Engineering Publications

Self-assembled monolayers (SAMs) are widely used in surface modifications, specifically in tuning the surface chemistry of materials. The structure and properties of SAMs have been extensively studied often with sophisticated tools, even for the simplest n-alkanethiolate SAMs. In SAMs, especially in linear n-alkanethiolates, the properties are dependent on the chain length, which is best manifested in the so-called odd–even effect, a simple yet not fully understood phenomenon. One main challenge is fully delineating the origin of length-dependent properties, which can be due to the structure (ideal SAMs), defect evolution, or substrate-molecule effects. This study demonstrates that utilizing ...


Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra 2017 University of Kentucky

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these ...


Functionalization Of Silver Nanoparticles On Membranes And Its Influence On Biofouling, Conor G. Sprick 2017 University of Kentucky

Functionalization Of Silver Nanoparticles On Membranes And Its Influence On Biofouling, Conor G. Sprick

Theses and Dissertations--Chemical and Materials Engineering

Ultrafiltration (UF) processes are often used as pretreatment before more retentive/costly processes, such as nanofiltration and reverse osmosis. This study shows the results of low-biofouling nanocomposite membranes, loaded with casein-coated silver nanoparticles (casein-Ag-NPs). Membranes were cast and imbedded with Ag-NPs using two approaches, physical blending of Ag-NPs in the dope solution (PAg-NP/CA membranes) and chemical attachment of Ag-NPs to cast membranes (CAg-NP/CA membranes), to determine their biofouling control properties. The functionalization of Ag-NPs onto the CA membranes was achieved via attachment with functionalized thiol groups with the use of glycidyl methacrylate (GMA) and cysteamine chemistries ...


Liquid Crystal Phase Behavior Of A Dna Dodecamer And Sunset Yellow, Joseph Theis 2017 University of Colorado, Boulder

Liquid Crystal Phase Behavior Of A Dna Dodecamer And Sunset Yellow, Joseph Theis

Undergraduate Honors Theses

The organic molecule Sunset Yellow, a chromonic dye, and reverse Dickerson dodecamer DNA, a self-complementary, 12 base pair strand of nucleic acids, both self-assemble into rod shaped aggregates that exhibit liquid crystal phases in solution. The sunset yellow molecules and the nano-DNA duplexes have similar structure with hydrophobic cores and peripheral hydrophilic ions. The focus of this research is on mixtures of these two aggregates in miscible liquid crystal states and the phase separation that occurs at higher concentrations in the columnar phase. The structure and phase space of this mixture was determined using polarized optical microscopy and x-ray diffraction ...


Tailoring Nanoscale Morphology Of Polymer: Fullerene Blends Using Electrostatic Field, Moneim Elshobaki, Ryan S. Gebhardt, John Carr, William Lindemann, Wenjie Wang, Eric Grieser, Swaminathan Venkatesan, Evan Ngo, Ujjal Bhattacharjee, Joseph Strzalka, Zhang Jiang, Qiquan Qiao, Jacob W. Petrich, David Vaknin, Sumit Chaudhary 2017 Mansoura University

Tailoring Nanoscale Morphology Of Polymer: Fullerene Blends Using Electrostatic Field, Moneim Elshobaki, Ryan S. Gebhardt, John Carr, William Lindemann, Wenjie Wang, Eric Grieser, Swaminathan Venkatesan, Evan Ngo, Ujjal Bhattacharjee, Joseph Strzalka, Zhang Jiang, Qiquan Qiao, Jacob W. Petrich, David Vaknin, Sumit Chaudhary

Chemistry Publications

To tailor the nanomorphology in polymer/fullerene blends, we study the effect of electrostatic field (E-field) on the solidification of poly(3-hexylthiophene-2, 5-diyl) (P3HT):[6,6]-phenyl-C61-butyric acid methyl ester (PC60BM) bulk heterojunction (BHJ). In addition to control; wet P3HT:PC60BM thin films were exposed to E-field of Van de Graaff (VDG) generator at three different directions—horizontal (H), tilted (T), and vertical (V)—relative to the plane of the substrate. Surface and bulk characterizations of the field-treated BHJs affirmed that fullerene molecules can easily penetrate the spaghetti-like P3HT and move up and down following the E-field. Using E-field treatment ...


The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington 2017 University of Kentucky

The Limits & Effects Of Draw On Properties And Morphology Of Pan-Based Precursor And The Resultant Carbon Fibers, Sarah Edrington

Theses and Dissertations--Mechanical Engineering

The process, structure, and property relationship of PAN fiber as a precursor to carbon fiber was studied. The limitations of stable spinning and property improvement associated with hot draw in solution spinning were found and quantified. Conditions were varied to generated precursor fiber up to the limit of draw, from which actual samples were collected for thermal conversion to carbon fiber. Samples of PAN and subsequent carbon fiber were characterized using tensile testing and x-ray analysis. The effects of draw on modulus and break stress, as well as the orientation of the crystalline structure of both parent precursor and resultant ...


Effect Of Interlayers On Mechanical Properties And Interfacial Stress Transfer Of 2d Layered Graphene-Polymer Nanocompsites, Colton C. Roach 2017 University of Kentucky

Effect Of Interlayers On Mechanical Properties And Interfacial Stress Transfer Of 2d Layered Graphene-Polymer Nanocompsites, Colton C. Roach

Theses and Dissertations--Mechanical Engineering

Graphene, a monolayer of sp2-hybridized carbon atoms arranged in a two-dimensional (2D) lattice, is one of the most important 2D nanomaterials and has attracted tremendous attentions due to its unique geometric characteristics and exceptional mechanical properties. One of the most promising applications of this 2D nanomaterial is in polymer nanocomposites, in which the ultra-stiff, ultra-thin graphene layers function as reinforcement fillers. However, two significant questions remain to be answered: (1) whether the mechanical behaviors of 2D graphene reinforced nanocomposites can be analyzed by the convention composite theory, which is developed primarily for one-dimensional (1D) fiber-type of fillers, and ...


Thiol-Ene Chemistry As An Enabler Of New Polymer Structures And Architectures, Joel M. Sarapas 2017 University of Massachusetts - Amherst

Thiol-Ene Chemistry As An Enabler Of New Polymer Structures And Architectures, Joel M. Sarapas

Doctoral Dissertations

This dissertation focuses on two distinct projects: the synthesis and design of novel cell penetrating peptides mimics (CPPMs), and the implementation of the thiol-ene click reaction to generate new polymer architectures and chemistries. Guanidinium-rich CPPMs were generated through both ROMP and RAFT polymerizations, allowing for a comparison to be made across polymer backbone chemistries with respect to both siRNA and protein cellular internalization. A particularly effective methacrylate derived block copolymer was able to deliver siRNA to nearly an entire Jurkat T cell population.

The thiol-ene reaction was implemented initially within the context of improving material design for solid polymer electrolytes ...


Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena 2017 University of Massachusetts Amherst

Solution-Based Assembly Of Conjugated Polymers Into Nanofibers For Organic Electronics, Daniel E. Acevedo Cartagena

Doctoral Dissertations

Solution-based crystallization of conjugated polymers offers a scalable and attractive route to develop hierarchical structures for electronic devices. The introduction of well-defined nucleation sites into metastable solutions provides a way to regulate the crystallization behavior, and therefore the morphology of the material. A crystallization method for generating metastable solutions of poly(3-hexylthiophene) (P3HT) was established. These metastable solutions allow P3HT to selectively crystallize into nanofibers (NFs) on graphene-coated surfaces. It was found that the crystallization kinetics is faster with increasing P3HT molecular weight and concentration. Through in situ atomic force microscopy, it was confirmed that NFs grow vertically in a ...


Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg 2017 University of Massachusetts Amherst

Polyorganosiloxanes: Molecular Nanoparticles, Nanocomposites And Interfaces, Daniel H. Flagg

Doctoral Dissertations

Five research projects described. First, a reproducible, lab-scale synthesis of MQ silicone copolymers is presented. MQ copolymers are commercially important materials that have been ignored by the academic community. One possible reason for this is the difficulty of controlling and reproducing the preparative copolymerizations that have been reported. A reproducible method for lab-scale preparation was developed that controls molecular weight by splitting the copolymerization into the discrete steps of sol growth from silicate precursor and end-capping by trimethylsiloxy groups. Characterization of MQ products implicates that they are composed of highly condensed, polycyclic structures.

The MQ copolymers prepared in the first ...


The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli 2017 University of Massachusetts Amherst

The Rheology And Roll-To-Roll Processing Of Shear-Thickening Particle Dispersions, Sunilkumar Khandavalli

Doctoral Dissertations

Particle dispersions are ubiquitous in our daily lives ranging from food and pharmaceutical products to inks. There has been great interest in the recent years in formulation of functional inks to fabricate myriad flexible electronic devices through high-throughput roll-to-roll technologies. The formulations often contain several functional additives or rheological modifiers that can affect the microstructure, rheology and processing. Understanding the rheology of formulations is important for tuning the formulation for optimal processing. This thesis presents investigations on the rheology of particle dispersions and their impact on roll-to-roll technologies.

Shear-thickening behavior is common in particle dispersions, particularly, concentrated particulate inks. We ...


Design Of Natural Rubber Extraction From Tks Dandelion, Jehad S. Alrawajfeh, Trevor Cody, Jason Pogozelski 2017 The University of Akron

Design Of Natural Rubber Extraction From Tks Dandelion, Jehad S. Alrawajfeh, Trevor Cody, Jason Pogozelski

Honors Research Projects

A design was developed for a controlled environment agriculture 3D greenhouse to grow and harvest TKS dandelions, as well as a processing plant to extract natural rubber and inulin from the roots. The design capacity was scaled for both pilot- and full-scale production: 100 and 100,000 tonnes of natural rubber per year, respectively. The byproducts of the process were dandelion greens, inulin, cellulose, and glucose; all of these except for cellulose were able to be valorized. The greenhouse was designed based on existing 3D hydroponic growing environments, and the extraction process was designed based on the original TKS dandelion ...


Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei 2017 University of Kentucky

Synthesis And Characterization Of Poly(Simvastatin) - Incorporated Copolymers And Blends For Bone Regeneration, Theodora Asafo-Adjei

Theses and Dissertations--Biomedical Engineering

Common biodegradable polyesters such as poly(lactic acid) (PLA), poly(lactic-co-glycolic acid) (PLGA) and poly(ε-caprolactone) (PCL) are used as drug delivery vehicles for tissue regenerative applications. However, they are typically bioinert, with drug loading limitations. Polymerizing the active agent or precursor into its respective biodegradable polymer would control drug loading via molar ratios of drug to initiator used for synthesis. Simvastatin was chosen due to its favorable anti-inflammatory, angiogenic, and osteogenic properties. In addition, its lactone ring lends itself to ring-opening polymerization and, consequently, the synthesis of poly(simvastatin) with controlled simvastatin release.

Simvastatin was first polymerized with a ...


Application Of Phase Shifting Electronic Speckle Pattern Interferometry In Studies Of Photoinduced Shrinkage Of Photopolymer Layers, Mohesh Moothanchery, Viswanath Bavigadda, Manojit Pramanik, Vincent Toal, Izabela Naydenova 2017 Nanyang Technological University, Singapore

Application Of Phase Shifting Electronic Speckle Pattern Interferometry In Studies Of Photoinduced Shrinkage Of Photopolymer Layers, Mohesh Moothanchery, Viswanath Bavigadda, Manojit Pramanik, Vincent Toal, Izabela Naydenova

Articles

Photoinduced shrinkage occurring in photopolymer layers during holographic recording was determined by Phase Shifting Electronic Speckle Pattern Interferometry. Phase maps were calculated from the changes in intensity at each pixel due to the phase differences introduced between object and reference beams. Shrinkage was then obtained from the changes in phase as recording proceeded. The technique allows for whole field measurement of the dimensional changes in photopolymers during holographic recording.


Characterization Of Electronic And Ionic Transport In Soft And Hard Functional Materials, Lawrence A. Renna 2017 University of Massachusetts Amherst

Characterization Of Electronic And Ionic Transport In Soft And Hard Functional Materials, Lawrence A. Renna

Doctoral Dissertations

Control over concurrent transport of multiple carrier types is desired in both soft and hard materials. For both types of materials, I demonstrate ways to characterize and execute governance over both electronic and ionic transport, and apply these concepts in the fabrication of devices with applications in conducting composites, photovoltaics, electrochemical energy storage, and memristors.

In soft materials, such as polymers, the topology of the binary polymer mesoscale morphology has major implications on the charge/ion transport. Traditional approaches to co-continuous structures involve either using blends of polymers or diblock copolymers. In polymer blends, the structures are kinetically trapped and ...


Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi 2017 University of Massachusetts Amherst

Guiding The Self-Assembly Of Block Copolymers In 2d And 3d With Minimal Patterning, Jaewon Choi

Doctoral Dissertations

Directed self-assembly (DSA) of block copolymers (BCPs) based on topographic patterns is one of the most promising strategies for overcoming resolution limitations in the current lithographic process and fabricating the next generation data storage devices. While the DSA of BCPs with deep topographic patterning has been extensively studied both experimentally and theoretically over the past two decades, less attention has been paid to the development of the DSA process using minimal topographic patterning. This dissertation focuses on understanding the effect of minimal topographic patterning on guiding the self-assembly of BCPs in 2D and 3D. We demonstrate that minimal trench patterns ...


Comparison And Analysis Of Flexibility For Cutlery Made From Biobased/ Biodegradable And Petrochemical Materials, Danfoss Power Solutions, Steve Devlin, W. Robert Stephenson, David A. Grewell 2017 Iowa State University

Comparison And Analysis Of Flexibility For Cutlery Made From Biobased/ Biodegradable And Petrochemical Materials, Danfoss Power Solutions, Steve Devlin, W. Robert Stephenson, David A. Grewell

Agricultural and Biosystems Engineering Publications

Biorenewable plastics can have the potential to reduce pollution, demand on landfills, and dependence on foreign petroleum caused by petroleum-based plastics. To determine the performance of biobased utensils compared to petrochemical based utensils, this study investigated 13 bio-based/biorenewable utensils and six petrochemical utensils in terms of weight, stiffness, and specific stiffness (stiffness/weight ratio). The Commercial Item Description (CID), which was created by the U.S. Government via the General Services Administration (GSA), is the current standard for testing utensils. The biobased products selected for this study were “commercial or industrial products (other than food or feed) that are ...


High Thermal Conductivity In Soft Elastomers With Elongated Liquid Metal Inclusions, Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, Carmel Majidi Majidi 2016 Carnegie Mellon University

High Thermal Conductivity In Soft Elastomers With Elongated Liquid Metal Inclusions, Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, Carmel Majidi Majidi

Michael Bartlett

Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid ...


Digital Commons powered by bepress