Open Access. Powered by Scholars. Published by Universities.®

Polymer and Organic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,076 Full-Text Articles 1,757 Authors 572,351 Downloads 91 Institutions

All Articles in Polymer and Organic Materials

Faceted Search

1,076 full-text articles. Page 29 of 50.

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra 2017 University of Kentucky

Tunable Nanocomposite Membranes For Water Remediation And Separations, Sebastián Hernández Sierra

Theses and Dissertations--Chemical and Materials Engineering

Nano-structured material fabrication using functionalized membranes with polyelectrolytes is a promising research field for water pollution, catalytic and mining applications. These responsive polymers react to external stimuli like temperature, pH, radiation, ionic strength or chemical composition. Such nanomaterials provide novel hybrid properties and can also be self-supported in addition to the membranes.

Polyelectrolytes (as hydrogels) have pH responsiveness. The hydrogel moieties gain or lose protons based on the pH, displaying swelling properties. These responsive materials can be exploited to synthesize metal nanoparticles in situ using their functional groups, or to immobilize other polyelectrolytes and biomolecules. Due to their properties, these …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao 2017 Michigan Technological University

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …


Rubber Additives To Concrete Specimens, Kendall J. Sweitzer, Mary McCannon 2017 The University of Akron

Rubber Additives To Concrete Specimens, Kendall J. Sweitzer, Mary Mccannon

Williams Honors College, Honors Research Projects

Rubber, as an additive to concrete, would hypothetically cause a concrete specimen to take on some mechanical characteristics of the rubber to a certain degree. In particular, the concrete’s durability should increase when exposed to fluctuating temperature conditions due to the rubber additive. This experiment sets out to test crumb rubber as a concrete additive, cured under various atmospheric conditions. The effects shall be measured via a simple concrete compression test.

Unfortunately, several errors took place during experimental process that led to inconclusive results. However, it can be reasonably considered from testing Matrix One that the addition of crumb rubber …


Design Of Natural Rubber Extraction From Tks Dandelion, Jehad S. Alrawajfeh, Trevor Cody, Jason Pogozelski 2017 The University of Akron

Design Of Natural Rubber Extraction From Tks Dandelion, Jehad S. Alrawajfeh, Trevor Cody, Jason Pogozelski

Williams Honors College, Honors Research Projects

A design was developed for a controlled environment agriculture 3D greenhouse to grow and harvest TKS dandelions, as well as a processing plant to extract natural rubber and inulin from the roots. The design capacity was scaled for both pilot- and full-scale production: 100 and 100,000 tonnes of natural rubber per year, respectively. The byproducts of the process were dandelion greens, inulin, cellulose, and glucose; all of these except for cellulose were able to be valorized. The greenhouse was designed based on existing 3D hydroponic growing environments, and the extraction process was designed based on the original TKS dandelion extraction …


High Thermal Conductivity In Soft Elastomers With Elongated Liquid Metal Inclusions, Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, Carmel Majidi Majidi 2016 Carnegie Mellon University

High Thermal Conductivity In Soft Elastomers With Elongated Liquid Metal Inclusions, Michael D. Bartlett, Navid Kazem, Matthew J. Powell-Palm, Xiaonan Huang, Wenhuan Sun, Jonathan A. Malen, Carmel Majidi Majidi

Michael Bartlett

Soft dielectric materials typically exhibit poor heat transfer properties due to the dynamics of phonon transport, which constrain thermal conductivity (k) to decrease monotonically with decreasing elastic modulus (E). This thermal−mechanical trade-off is limiting for wearable computing, soft robotics, and other emerging applications that require materials with both high thermal conductivity and low mechanical stiffness. Here, we overcome this constraint with an electrically insulating composite that exhibits an unprecedented combination of metal-like thermal conductivity, an elastic compliance similar to soft biological tissue (Young’s modulus < 100 kPa), and the capability to undergo extreme deformations (>600% strain). By incorporating liquid metal …


Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers, Nitilaksha Phalaxayya Hiremath 2016 University of Tennessee, Knoxville

Structure And Properties Of Cnt Yarns And Cnt/Cnf Reinforced Pan-Based Carbon Fibers, Nitilaksha Phalaxayya Hiremath

Doctoral Dissertations

There is continuing effort to enhance the strength and modulus of carbon fibers by various combinations of materials and processing. Carbon fibers are produced from various precursors, and the strength of the CFs are directly related to the type of precursor used to make them. Carbon Nanotubes (CNTs) have received a great deal of attention due to their unique structure and properties. Major focus of this research is on the evaluation of processing, structure and properties of CNT based yarns and composite fibers.

High strength and low cost carbon fibers (CFs) are needed for today’s applicatio ns. A low cost …


Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers 2016 University of Tennessee, Knoxville

Strategies For Controlling Bulk Heterojunction Morphology, Zach Daniel Seibers

Doctoral Dissertations

Organic photovoltaic devices have been extensively studied as a means to produce sustainable energy. However, the performance of organic-photovoltaic (OPV) devices is dependent upon a number of factors including the morphology of the active layer, device architecture, and processing conditions. Recent research has indicated that fullerenes in the bulk heterojunction are entropically driven to the silicon and air interfaces upon crystallization of P3HT, which occurs during thermal annealing. The first chapter of this research focuses on investigating the structure and function of end-tethered poly(3-hexylthiophene) chains to a transparent electrode as an anode buffer layer. Neutron reactivity reveals that these P3HT …


Design And Synthesis Of Dynamic Covalent Polymer Scaffolds With Controlled Architectures, Emily Annette Hoff 2016 University of Southern Mississippi

Design And Synthesis Of Dynamic Covalent Polymer Scaffolds With Controlled Architectures, Emily Annette Hoff

Dissertations

The design and synthesis of functional, controlled polymer architectures is essential to the development of new materials with precise and tailorable properties or applications. The work described in this dissertation focuses on the development of controlled polymer architectures with dynamic linkages for the design of multifunctional materials and surfaces via robust, efficient, and stimuli-responsive strategies.

In Chapter III, a post-polymerization modification strategy based on ambient temperature nucleophilic chemical deblocking of polymer scaffolds bearing N-heterocycle blocked isocyanate moieties is reported. Room temperature RAFT polymerization of three azole-N-carboxamide methacrylates, including 3,5-dimethyl pyrazole, imidazole, and 1,2,4-triazole derivatives, afforded reactive polymer scaffolds …


Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe 2016 University of Southern Mississippi

Nanostructured Morphologies In Glassy Polymer Networks, Brian Greenhoe

Dissertations

The body of this work describes a novel approach for the dispersion of multi-walled carbon nanotubes in a high Tg epoxy prepolymer matrix using a twin screw high-shear continuous reactor. The method demonstrated improves on previous dispersion methods in several ways. It offers increased efficiency through excellent heat transfer, while being solvent-less, scale-able, and tailorable to drive dispersion states to judiciously chosen dispersion states. Furthermore, it was shown that dispersion state and agglomerate morphology can be directed, in several ways, through processing conditions and also by controlling the matrix viscosity profile through cure. Broadband dielectric spectroscopy, optical hot-stage microscopy, …


Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek 2016 University of Tennessee, Knoxville

Development Of Lignin Carbon Fiber And Reinforced Composites, Nathan Kieran Meek

Masters Theses

The aim of this work is to develop lignin carbon fiber for composite applications. This included mechanical testing of single lignin carbon fiber (LCF), interfacial shear strength determination for LCF-resin systems using single fiber fragmentation, x-ray diffraction for the evaluation of microstructural parameters, and finally composite manufacturing and testing. Through these focused areas of analysis, the carbon fiber is thoroughly characterized and composite performance is evaluated. This effort was a collaboration with the Center for Renewable Carbon (CRC) and the Civil and Environmental Engineering Department. LCF produced by the CRC resulted in fibers having tensile strength of 250-800 MPa and …


The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula 2016 University of Arkansas, Fayetteville

The Effect Of Process Parameters And Surface Condition On Bond Strength Between Additively Manufactured Components And Polymer Substrates, Bharat Bhushan Chivukula

Graduate Theses and Dissertations

Additive patching is a process in which printers with multiple axes deposit molten material onto a pre-defined surface to form a bond. Studying the effect of surface roughness and process parameters selected for printing auxiliary part on the bond helps in improving the strength of the final component. Particularly, the influence of surface roughness, as established by adhesion theory, has not been evaluated in the framework of additive manufacturing (AM). A full factorial design of experiments with five replications was conducted on two levels and three factors, viz., layer thickness, surface roughness, and raster angle to examine the underlying effects …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox 2016 University of Maine

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett 2016 University of Southern Mississippi

Structure-Property Relationships Of Polyisobutylene-Block-Polyamide Thermoplastic Elastomers, Morgan Dunn Heskett

Master's Theses

Thermoplastic elastomers (TPEs) are a class of polymer fit for a wide variety of applications due to their customizability. In the synthesis of these types of materials, an elastically-performing polymer, deemed the “soft block,” is combined with a stiffer “hard block” polymer, each of which can be selected based on their own specific properties in order to achieve desired material behavior in the final copolymer. Recently, the use of polyisobutylene as a soft block in combination with a polyamide hard block has been investigated for use in TPE synthesis. While the material showed some promising behavior, many properties were still …


Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix 2016 University of Arkansas, Fayetteville

Interactive Physics And Characteristics Of Photons And Photoelectrons In Hyperbranched Zinc Oxide Nanostructures, Garrett Edward Torix

Graduate Theses and Dissertations

As is commonly known, the world is full of technological wonders, where a multitude of electronic devices and instruments continuously help push the boundaries of scientific knowledge and discovery. These new devices and instruments of science must be utilized at peak efficiency in order to benefit humanity with the most advanced scientific knowledge. In order to attain this level of efficiency, the materials which make up these electronics, or possibly more important, the fundamental characteristics of these materials, must be fully understood. The following research attempted to uncover the properties and characteristics of a selected family of materials. Herein, zinc …


Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer 2016 University of Tennessee, Knoxville

Lignin Maximization: Analyzing The Impact Of Different Feedstocks And Feedstock Ratios Using Organosolv Fractionation, Marc Banholzer

Masters Theses

Over-exploitation of fossil fuels coupled with increasing pressure to reduce carbon emissions are prompting a transition from conventional petrochemical feedstocks to sustainable and renewable sourced carbon. The use of lignocellulosic biomass as a feedstock for integrated biorefining is of current high interest, as separation into its component parts affords process streams of cellulose, hemicellulose and lignin, each of which can serve as a starting point for the production of biobased chemicals and fuels. Given the large number of potential sources of lignocellulosic feedstocks, the biorefinery will need to adapt to the supplies available over a normal growing season. Of particular …


Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov 2016 University of Surrey, UK

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov

Chemistry Faculty Publications

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by …


Nanoscience At Interfaces And Surfaces: From Jamming To Electrode Texturing, Mengmeng Cui 2016 University of Massachusetts Amherst

Nanoscience At Interfaces And Surfaces: From Jamming To Electrode Texturing, Mengmeng Cui

Doctoral Dissertations

This dissertation focuses on the nanoparticle self-assembly on the liquid/liquid interface and the nanomaterial modification on surface. The self-assembly of nanoparticles at the liquid/liquid interface was utilized to trap non-equilibrium morphology when the nanoparticles reach jamming state. The dynamics of jammed systems were further studied by X-ray photon correlation spectroscopy. For the surface part, the nanomaterials were modified on the electrodes to improve the performance of microbial electrosynthesis. Also, a novel and simple method was developed to prepare nanomaterials including nanoparticle surfactants and carbon nanotubes (CNTs).


Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang 2016 University of Massachusetts Amherst

Evaporation Induced Self-Assembly And Characterization Of Nanoparticulate Films: A New Route To Bulk Heterojunctions, Yipeng Yang

Doctoral Dissertations

Polymer-based semiconducting materials are promising candidates for large-scale, low-cost photovoltaic devices. To date, the efficiency of these devices has been low in part because of the challenge of optimizing molecular packing while also obtaining a bicontinuous structure with a characteristic length comparable to the exciton diffusion length of 10 to 20 nm. In this dissertation we developed an innovative evaporation-induced nanoparticle self-assembly technique, which could be an effective approach to fabricate uniform, densely packed, smooth thin films with cm-scale area from home-made P3HT nanoparticles. Unlike the previous reports of nanoparticle-based film formation, we use a mixture of two solvents so …


Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger 2016 University of Massachusetts Amherst

Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger

Doctoral Dissertations

The persistence of antibiotic resistance in bacterial pathogens remains a primary concern for immunocompromised and critically-ill hospital patients. Hospital associated infections can be deadly and reduce the successes of medical advancements, such as, cancer therapies and medical implants. Thus, it is imperative to develop materials that can (i) deliver new antibiotics with accuracy, as well as (ii) uptake pathogenic microbes. In this work, we will demonstrate that electrospun nanofiber mats offer a promising platform for both of these objectives because of their high surface-to-volume ratio, interconnected high porosity, gas permeability, and ability to contour to virtually any surface. To provide …


Engineering Polymers Through Impact Modification And Superheated Liquid Processing, Gregory Connor Evans 2016 University of Massachusetts Amherst

Engineering Polymers Through Impact Modification And Superheated Liquid Processing, Gregory Connor Evans

Doctoral Dissertations

A new approach to toughen anionically polymerized polyamide 6 (aPA6) was applied using reaction induced phase separation (RIPS). This method solved issues with particle dispersion, mixture viscosity, and additive concentration common with conventional rubber toughening thereby making it an ideal candidate for fiber reinforced aPA6 reaction injection molding (RIM). Octamethylcyclotetrasiloxane (D4) was used as a functional additive that undergoes RIPS during aPA6 polymerization and polymerizes to polydimethylsiloxane (PDMS). Controlled phase separation, modulus retention, and increased crystallinity were achieved at low additive concentrations. Optimal properties were achieved with 2 wt% D4. Fracture energy was measured at high …


Digital Commons powered by bepress