Open Access. Powered by Scholars. Published by Universities.®

Metallurgy Commons

Open Access. Powered by Scholars. Published by Universities.®

2,177 Full-Text Articles 2,976 Authors 484,439 Downloads 47 Institutions

All Articles in Metallurgy

Faceted Search

2,177 full-text articles. Page 6 of 30.

The Magnetic, Electrical And Structural Properties Of Copper-Permalloy Alloys, Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark van Schilfgaarde, N. Newman 2017 Arizona State University

The Magnetic, Electrical And Structural Properties Of Copper-Permalloy Alloys, Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark Van Schilfgaarde, N. Newman

Kirill Belashchenko Publications

Copper-permalloy [Cu1–x(Ni80Fe20)x] alloy films were deposited by co-sputtering and their chemical, structural, magnetic, and electrical properties were characterized. These films are found to have favorable weak ferromagnetic properties for low temperature magnetoelectronic applications. Our results show that by varying the composition, the saturation magnetization (Ms) can be tuned from 700 emu/cm3 to 0 and the Curie temperature (Tc), can be adjusted from 900 K to 0 K. The Ms and Tc are found to scale linearly between x = 25% and 100%. Electronic structure calculations are used to ...


Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies Of Temperature Effects, As Applied To Metastable Titanium Alloy Β-21s, Brian Martin, Peyman Samimi, Peter C. Collins 2017 Iowa State University

Engineered, Spatially Varying Isothermal Holds: Enabling Combinatorial Studies Of Temperature Effects, As Applied To Metastable Titanium Alloy Β-21s, Brian Martin, Peyman Samimi, Peter C. Collins

Materials Science and Engineering Publications

A novel method to systematically vary temperature and thus study the resulting microstructure of a material is presented. This new method has the potential to be used in a combinatorial fashion, allowing the rapid study of thermal holds on microstructures to be conducted. This is demonstrated on a beta titanium alloy, where the thermal history has a strong effect on microstructure. It is informed by simulation and executed using the resistive heating capabilities of a Gleeble 3800 thermomechanical simulator. Spatially varying isothermal holds of 4 h were affected, where the temperature range of the multiple isothermal holds varied by ~175 ...


Experimental And Computational Investigation Of High Entropy Alloys For Elevated-Temperature Applications, Haoyan Diao 2017 University of Tennessee, Knoxville

Experimental And Computational Investigation Of High Entropy Alloys For Elevated-Temperature Applications, Haoyan Diao

Doctoral Dissertations

To create and design novel structural materials with enhanced creep-resistance, fundamental studies have been conducted on high-entropy alloys (HEAs), using (1) thermodynamic calculations, (2) mechanical tests, (3) neutron diffraction, (4) characterization techniques, and (5) crystal-plasticity finite-element modeling (CPFEM), to explore future candidates for next-generation power plants.

All the constituent binary and ternary systems of the Al-Cr-Cu-Fe-Mn-Ni and Al-Co-Cr- Fe-Ni systems were thermodynamically modeled within the whole composition range. Comparisons between the calculated phase diagrams and literature data are in good agreement. The AlxCrCuFeMnNi HEAs have disordered [face-centered-cubic (FCC) + body-centered-cubic (BCC)] crystal structures. Excessive alloying of the Al element ...


Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani 2017 University of Arkansas, Fayetteville

Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani

Theses and Dissertations

The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, <100>, <110>, <111> and <321>, and dislocation density behind ...


Effective Boronizing Process For Age Hardened Inconel 718, Aria Khalili 2017 The University of Western Ontario

Effective Boronizing Process For Age Hardened Inconel 718, Aria Khalili

Electronic Thesis and Dissertation Repository

Boronizing or boriding is a technique to mitigate wear damage in industrial valves made of age-hardenable Inconel® 718 which is a nickel-based superalloy. Boriding involves immersing the part in a patented boron-based compound and heating over 800 oC.

Boriding combined with aging has a detrimental thermal effect and was the subject of this investigation. The effects on hardness, wear and grain size, of boriding and aging separately, subsequently, and simultaneously, were investigated to observe the microstructure and mechanical properties.

The results show that boriding has negligible effect on the grain size and the hardness of the substrate. Besides, a ...


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das 2017 University of Nebraska-Lincoln

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Theses, Dissertations, and Student Research: Department of Physics and Astronomy

No abstract provided.


A Deformation-Processed Al-Matrix/Ca-Nanofilamentary Composite With Low Density, High Strength, And High Conductivity, Liang Tian, Alan M. Russell, Trevor M. Riedemann, Soeren Mueller, Iver E. Anderson 2017 University of Michigan-Ann Arbor

A Deformation-Processed Al-Matrix/Ca-Nanofilamentary Composite With Low Density, High Strength, And High Conductivity, Liang Tian, Alan M. Russell, Trevor M. Riedemann, Soeren Mueller, Iver E. Anderson

Materials Science and Engineering Publications

Light, strong materials with high conductivity are desired for many applications such as power transmission conductors, fly-by-wire systems, and downhole power feeds. However, it is difficult to obtain both high strength and high conductivity simultaneously in a material. In this study, an Al/Ca (20 vol%) nanofilamentary metal-metal composite was produced by powder metallurgy and severe plastic deformation. Fine Ca metal powders (~200 µm) were produced by centrifugal atomization, mixed with pure Al powder, and deformed by warm extrusion, swaging, and wire drawing to a true strain of 12.9. The Ca powder particles became fine Ca nanofilaments that reinforce ...


Adsorption Of Salicylhydroxamic Acid On Selected Rare Earth Oxides And Carbonates, Greer Galt 2017 Montana Tech

Adsorption Of Salicylhydroxamic Acid On Selected Rare Earth Oxides And Carbonates, Greer Galt

Graduate Theses & Non-Theses

Adsorption behavior of the anionic collector salicylhydroxamic acid (SHA) on a selected group of rare earth oxides (REOs) and carbonates (RECs) was studied via experimental methods and modelling software. Synthetic oxide and carbonate powders of the rare earth elements cerium (Ce), praseodymium (Pr), europium (Eu), and terbium (Tb) were tested for this research. Studies were conducted at different pH levels to analyze the kinetics of collector adsorption onto the oxide and carbonate surfaces in attempts to optimize recovery parameters for commercial flotation processes using SHA. In addition, thermodynamic software StabCal was implemented to compare theoretical adsorption behavior of collectors SHA ...


Synthesis And Characterization Of Gd-Doped Magnetite Nanoparticles, Honghu Zhang, Vikash Malik, Surya K. Mallapragada, Mufit Akinc 2017 The Ames Laboratory

Synthesis And Characterization Of Gd-Doped Magnetite Nanoparticles, Honghu Zhang, Vikash Malik, Surya K. Mallapragada, Mufit Akinc

Chemical and Biological Engineering Publications

Synthesis of magnetite nanoparticles has attracted increasing interest due to their importance in biomedical and technological applications. Tunable magnetic properties of magnetite nanoparticles to meet specific requirements will greatly expand the spectrum of applications. Tremendous efforts have been devoted to studying and controlling the size, shape and magnetic properties of magnetite nanoparticles. Here we investigate gadolinium (Gd) doping to influence the growth process as well as magnetic properties of magnetite nanocrystals via a simple co-precipitation method under mild conditions in aqueous media. Gd doping was found to affect the growth process leading to synthesis of controllable particle sizes under the ...


Microstructure And Oxidation Behavior Of Al + Cr Co-Deposited Coatings On Nickel-Based Superalloys, R. Q. Lin, C. Fu, M. Liu, H. Jiang, X. Li, Z. M. Ren, Alan M. Russell, G. H. Cao 2017 Shanghai Key Laboratory of Advanced Ferrometallurgy

Microstructure And Oxidation Behavior Of Al + Cr Co-Deposited Coatings On Nickel-Based Superalloys, R. Q. Lin, C. Fu, M. Liu, H. Jiang, X. Li, Z. M. Ren, Alan M. Russell, G. H. Cao

Materials Science and Engineering Publications

The microstructure and oxidation behavior were investigated in Al and Cr co-deposited diffusion coatings prepared by the pack cementation process. The composition (in wt.%) of the packs was 3NH4Cl-xAl-(25-x)Cr-72Al2O3 with different Al levels (x = 0.5, 1.2, 4, and 10). After the heat-treatment process, the corresponding microstructure of the coatings was Cr + Cr2Ni3 + Al-rich phase, Cr + Cr2Ni3, Cr + NiAl + Ni3Al and NiAl + AlCr2, respectively. The isothermal oxidation tests were performed at 950 °C for up to 100 h in air, and the oxidation kinetic curves were obtained. It indicated that the coatings formed in the packs containing ...


Cermet Development For High Temperature And High Pressure Applications, Beatriz Justus Ferez, Samantha Guthrie, Brian J. Jaques (Mentor), Darryl P. Butt (Mentor) 2017 Boise State University

Cermet Development For High Temperature And High Pressure Applications, Beatriz Justus Ferez, Samantha Guthrie, Brian J. Jaques (Mentor), Darryl P. Butt (Mentor)

Idaho Conference on Undergraduate Research

Many traditionally used low cost alloys are easily corroded in steam or supercritical CO2. An effective solution is to utilize ceramic heat exchangers that are often integrated with metallic components which result in a significant thermal expansion mismatch. The goal of this project is to develop a sealing method to create a hermetic joint between the ceramic and metal alloy. Proposed is a seal ring containing a cermet powder with a coefficient of thermal expansion (CTE) higher than the ceramic and metal to produce a high temperature compressive seal. Cermets of Ag and MgO have been selected to withstand ...


Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang 2017 Louisiana State University and Agricultural and Mechanical College

Design And Validation Of Novel Potential High Entropy Alloys, Boliang Zhang

LSU Doctoral Dissertations

The design approach and validation of single phase senary refractory high entropy alloys (HEAs) MoNbTaTiVW and HfNbTaTiVZr were presented in first part of this dissertation. The design approach was to combine phase diagram inspection of available binary and ternary systems and Calculation of Phase Diagrams (CALPHAD) prediction. Experiments using X-ray diffraction and scanning electron microscopy techniques verified single phase microstructure in body centered cubic lattice for both alloys. The observed elemental segregation agrees well with the solidification prediction using Scheil model. The lattice constant, density and microhardness were measured to be 0.3216 nm, 4.954 GPa and 11.70 ...


Flow Stress And Microstructure Evolution During Hot Forging Of Aa6099, Mohammed Tariq Alamoudi 2017 Lehigh University

Flow Stress And Microstructure Evolution During Hot Forging Of Aa6099, Mohammed Tariq Alamoudi

Theses and Dissertations

Hot forgoing processes are used for plastic deformation of metals at temperatures above the material recrystallization temperature. In this process metal ingots are converted into complex shapes by applying stresses above the yield stress of the deformed material on pre-heated metals in a short period of time. Hot forging process provides products with high strength due to grains refinement and absence of porosity. In the recent years, the demand of aluminum forged products has increased comparing with the cast products, largely in the automotive industry. Many materials characteristics such as: good mechanical properties, low weight, good corrosion resistance, low forging ...


Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin 2017 Michigan Technological University

Microstructural Evolution And Mechanical Properties Of Zn-Ti Alloys For Biodegradable Stent Applications, Zhiyong Yin

Dissertations, Master's Theses and Master's Reports

Stents made of biodegradable metallic materials are increasingly gaining interest within the biomaterials field because of their superior mechanical properties and biodegradation rates as compared to polymeric materials. Zinc and its alloys have been developed and investigated as possible candidates for biodegradable stent applications in the last five years. This study intended to formulate and characterize a new series of Zn-Ti alloys, with titanium additions of less than 1-3 wt%, with the primary objective to develop and select an alloy that meets benchmark values of mechanical properties for biodegradable stents. A series of Zn-Ti alloys was formulated through vacuum induction ...


Evaluation Of Thermal Stability Of Ausferrite In Austempered Ductile Iron Using Differential Scanning Calorimetry, Karl Warsinski 2017 Michigan Technological University

Evaluation Of Thermal Stability Of Ausferrite In Austempered Ductile Iron Using Differential Scanning Calorimetry, Karl Warsinski

Dissertations, Master's Theses and Master's Reports

Austempered Ductile Iron (ADI) is prone to changes in microstructure and mechanical properties when exposed to elevated service temperatures. Differential Scanning Calorimetry has been used to evaluate the stabilizing effects of copper, nickel, molybdenum, and cobalt on the ausferrite structure. Previous studies have conflated the effects of various alloy additions, and little effort has been made to systematically catalog the effects of individual elements. The focus of the current research has been to identify alloying elements that more strongly stabilize the ausferrite structure in order to improve service life of ADI at elevated temperatures. Nickel has been shown to have ...


Structural Characteristics And Corrosion Behavior Of Bio-Degradable Zn-Li Alloys In Stent Application, Shan Zhao 2017 Michigan Technological University

Structural Characteristics And Corrosion Behavior Of Bio-Degradable Zn-Li Alloys In Stent Application, Shan Zhao

Dissertations, Master's Theses and Master's Reports

Zinc has begun to be studied as a bio-degradable material in recent years due to its excellent corrosion rate and optimal biocompatibility. Unfortunately, pure Zn’s intrinsic ultimate tensile strength (UTS; below 120 MPa) is lower than the benchmark (about 300 MPa) for cardiovascular stent materials, raising concerns about sufficient strength to support the blood vessel. Thus, modifying pure Zn to improve its mechanical properties is an important research topic.

In this dissertation project, a new Zn-Li alloy has been developed to retain the outstanding corrosion behavior from Zn while improving the mechanical characteristics and uniform biodegradation once it is ...


Tensile Specimen Punch, John Allen 2017 Central Washington University

Tensile Specimen Punch, John Allen

All Undergraduate Projects

This project comes from a need to have tensile specimens made for the MET 351, Metallurgy/Materials and Processes, and 426, Applied Strengths of Materials, labs. This punch is designed to be used with an arbor press to create the desired tensile specimen shape out of plastic blanks. The initial concept was suggested by Dr. Craig Johnson. The designs went through many changes, for example getting rid of the sides originally proposed to hold the specimen in place, and modifications to other parts to make them more efficient. Additional parts were also added to the design with the help and ...


Process Development And Implementation For The Imaging Of Heat Treated A2 Steel For Consolidation Into An Atlas, Jessica Roberts 2017 James Madison University

Process Development And Implementation For The Imaging Of Heat Treated A2 Steel For Consolidation Into An Atlas, Jessica Roberts

Senior Honors Projects, 2010-current

Material processes, properties, and microstructure are interconnected, often visualized as the points of a triangle. Changing the process a material goes through will in turn change the properties and microstructure of that material. In materials research and education (specifically with metals), comparison between research or experiment results and scholarly-accepted results is important. When reading textbooks addressing different properties of metals and the process of metal treatment, images are often shown of the various microstructures associated with each property or process stage. The difficulty comes in trying to compare the stages or properties to one another; often different materials and processes ...


Control Of Columnar To Equiaxed Transition In Solidification Macrostructure Of Austenitic Stainless Steel Castings, Semen Naumovich Lekakh, Ronald J. O'Malley, Mark C. Emmendorfer, Brenton Hrebec 2017 Missouri University of Science and Technology

Control Of Columnar To Equiaxed Transition In Solidification Macrostructure Of Austenitic Stainless Steel Castings, Semen Naumovich Lekakh, Ronald J. O'Malley, Mark C. Emmendorfer, Brenton Hrebec

Materials Science and Engineering Faculty Research & Creative Works

Solidification macrostructure is of great importance for the properties and the quality of castings made from austenitic grade stainless steels (ASS) because there are limited options to change as-cast macrostructure in the solid condition. A typical cast macrostructure of ASS has a fine surface chilled zone followed by an elongated dendrite zone, columnar to equiaxed transition (CET) zone, and centrally located equiaxed crystals. Several castings from ASS were produced to determine the effects of casting geometry, chilling, and grain refinement on CET. The transient thermal field in solidified heavy castings was simulated and used to determine an isotherm velocity (V ...


Pitting Corrosion Of 410 Stainless Steel In Hcl Solutions, Paul D. Krell 2017 The University of Akron

Pitting Corrosion Of 410 Stainless Steel In Hcl Solutions, Paul D. Krell

Williams Honors College, Honors Research Projects

410 stainless steel (SS) is a material used in HCl services, such as distillation column trays in oil refineries. Unlike other alloys, however, the oil refining industry lacks a good reference for the corrosion rate of 410 SS at the varying HCl concentrations and temperatures the material might experience as trays in crude unit distillation columns. The goal of this project is to fill that knowledge gap. The corrosion behavior of 410 SS in HCl environments of pH 0.50, 1.25, 2.25, 3.25, and 4.25 at temperatures of 38, 52, 79, and 93°C was investigated ...


Digital Commons powered by bepress