Open Access. Powered by Scholars. Published by Universities.®

Ceramic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,069 Full-Text Articles 1,424 Authors 228,722 Downloads 37 Institutions

All Articles in Ceramic Materials

Faceted Search

1,069 full-text articles. Page 2 of 16.

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao 2018 University of Central Florida

Optimal Sintering Temperature Of Ceria-Doped Scandia Stabilized Zirconia For Use In Solid Oxide Fuel Cells, Amanda K. Assuncao

Honors Undergraduate Theses

Carbon emissions are known to cause decay of the Ozone layer in addition to creating pollutant, poisonous air. This has become a growing concern among scientists and engineers across the globe; if this issue is not addressed, it is likely that the Earth will suffer catastrophic consequences. One of the main culprits of these harmful carbon emissions is fuel combustion. Between vehicles, power plants, airplanes, and ships, the world consumes an extraordinary amount of oil and fuel which all contributes to the emissions problem. Therefore, it is crucial to develop alternative energy sources that minimize the impact on the environment ...


Processing Of Cubic Stabilized Zirconia Electrolyte Membranes For Electrolyte-Supported Single Cell Solid Oxide Fuel Cells Using Tape Casting, Arturo Coronado Rodriguez 2018 University of Central Florida

Processing Of Cubic Stabilized Zirconia Electrolyte Membranes For Electrolyte-Supported Single Cell Solid Oxide Fuel Cells Using Tape Casting, Arturo Coronado Rodriguez

Honors Undergraduate Theses

Electrochemical conversion devices are a developing technology that prove to be a viable and more efficient alternative to current environmentally friendly generation devices. As such, constant research has been done in the last few decades to increase their applications and reliability. One of these systems, and the focus of this research, is the single cell Solid Oxide Fuel Cell (SOFC). These systems are a developing technology which main caveat is the need of high operating temperatures and costs. As such, most multidisciplinary research has been focused on researching materials and/or processes that help mitigate the costs or lower the ...


Raman Spectroscopy Of The Skeleton Of The Coral Acropora Cervicornis, Zachary C. Shepard 2018 University of Central Florida

Raman Spectroscopy Of The Skeleton Of The Coral Acropora Cervicornis, Zachary C. Shepard

Honors Undergraduate Theses

Coral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral’s structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis was used. Coral skeleton samples I subjected to mechanical loading studied their vibrational properties by exciting the material with 532nm visible light. A uniaxial compressive ...


Bismuth Ferrite-Based Lead-Free Ceramics And Multilayers With High Recoverable Energy Density, Dawei Wang, Zhongming Fan, Di Zhou, Amir Khesro, Shunsuke Murakami, Antonio Feteira, Quanliang Zhao, Xiaoli Tan, Ian M. Reaney 2018 University of Sheffield

Bismuth Ferrite-Based Lead-Free Ceramics And Multilayers With High Recoverable Energy Density, Dawei Wang, Zhongming Fan, Di Zhou, Amir Khesro, Shunsuke Murakami, Antonio Feteira, Quanliang Zhao, Xiaoli Tan, Ian M. Reaney

Materials Science and Engineering Publications

Lead-free ceramics with high recoverable energy density (Wrec) and energy storage efficiency (η) are attractive for advanced pulsed power capacitors to enable greater miniaturization and integration. In this work, dense bismuth ferrite (BF)-based, lead-free 0.75(Bi1−xNdx)FeO3-0.25BaTiO3 (BNxF-BT) ceramics and multilayers were fabricated. A transition from a mixed pseudocubic and R3c to a purely pseudocubic structure was observed as x increased with the optimum properties obtained for mixed compositions. The highest energy densities, W ∼ 4.1 J cm−3 and Wrec ∼ 1.82 J cm−3, were achieved for BN15F-BT, due to the enhanced breakdown field ...


Double Hysteresis Loops At Room Temperature In Nanbo3-Based Lead-Free Antiferroelectric Ceramics, Xiaoli Tan, Zunping Xu, Xiaoming Liu, Zhongming Fan 2017 Iowa State University

Double Hysteresis Loops At Room Temperature In Nanbo3-Based Lead-Free Antiferroelectric Ceramics, Xiaoli Tan, Zunping Xu, Xiaoming Liu, Zhongming Fan

Materials Science and Engineering Publications

Polarization-field double hysteresis loops have hardly ever been observed at room temperature in polycrystalline NaNbO3, one of a few lead-free antiferroelectric compounds. In this Letter, it is shown that the exposure of a modified NaNbO3 ceramic to bipolar electric fields of ±160 kV/cm at 100°C can preserve the double hysteresis loops at room temperature. These double hysteresis loops can still be observed after 125 days room temperature aging with some decay in maximum polarization. Frequency dependence analysis suggests that the double hysteresis loops originate from the antiferroelectric ↔ ferroelectric phase transition, not the charged defects.

A novel electrical treatment ...


Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed 2017 The Universty of Western Ontario

Fabrication And Modification Of Titania Nanotube Arrays For Harvesting Solar Energy And Drug Delivery Applications, Ahmed El Ruby Abdel Rahman Mohamed

Electronic Thesis and Dissertation Repository

The fast diminishing of fossil fuels in the near future, as well as the global warming caused by increasing greenhouse gases have motivated the urgent quest to develop advanced materials as cost-effective photoanodes for solar light harvesting and many other photocatalytic applications. Recently, titania nanotube arrays (TNTAs) fabricated by anodization process has attracted great interest due to their excellent properties such as: high surface area, vertically oriented, highly organized, one-dimensional, nanotubular structure, photoactivity, chemical stability and biocompatibility. This unique combination of excellent properties makes TNTAs an excellent photoanode for solar light harvesting. However, the relatively wide band gap energy of ...


Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar 2017 University of Louisville

Material Properties Design Using Simulations And Experiments For Powder Injection Molding Of Lead Zirconate Titanate (Pzt)., Bhushan Pramod Bandiwadekar

Electronic Theses and Dissertations

Powder injection molding (PIM) process simulations can be performed to minimize the number of injection molding experiments by estimating material properties necessary for PIM simulations. In current work, lead zirconate titanate (PZT) powder-polymer binder feedstock was compounded for 45 vol. % and 52 vol. % solids loading. PIM experiments on designed micro-pillar array geometry were performed using 52 vol. % PZT. Using PIM experiments results as basis, PIM simulations were performed on designed micro-pillar array geometries to understand the effectiveness of PIM simulations with the use of estimated feedstock properties in predicting molding behavior that have micro-features. Additionally, PIM simulations were performed to ...


Low Energy Recoil Simulations In Mgo, Linbo3, And Litao3 Using Ab Initio Molecular Dynamics, Benjamin Aaron Petersen 2017 University of Tennessee, Knoxville

Low Energy Recoil Simulations In Mgo, Linbo3, And Litao3 Using Ab Initio Molecular Dynamics, Benjamin Aaron Petersen

Doctoral Dissertations

Ab initio molecular dynamics (AIMD) was utilized to test a series of materials, MgO, LiNbO3 , and LiTaO3 , to determine defect structures produced due to low energy recoil events . The kinetic energy required to displace an atom from its lattice site, the threshold displacement energy, was calculated for an array of directions in each material, based on symmetry and complexity of the structure. MgO having a simple rock salt structure provided a model material for demonstrating computational techniques used later on LiTaO3 and LiNbO3 . The minimum values for displacing an atom were at 25.5 eV for ...


Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani 2017 Amir Chamaani

Hybrid Polymer Electrolyte For Lithium-Oxygen Battery Application, Amir Chamaani

FIU Electronic Theses and Dissertations

The transition from fossil fuels to renewable resources has created more demand for energy storage devices. Lithium-oxygen (Li-O2) batteries have attracted much attention due to their high theoretical energy densities. They, however, are still in their infancy and several fundamental challenges remain to be addressed. Advanced analytical techniques have revealed that all components of a Li-O2 battery undergo undesirable degradation during discharge/charge cycling, contributing to reduced cyclability. Despite many attempts to minimize the anode and cathode degradation, the electrolyte remains as the leading cause for rapid capacity fading and poor cyclability in Li-O2 batteries. In this ...


Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo 2017 The Graduate Center, City University of New York

Nonlinear Optical Studies Of Defects And Domain Structures In Perovskite-Type Dielectric Ceramics, David J. Ascienzo

All Dissertations, Theses, and Capstone Projects

In order to improve future generations of dielectric capacitors a deeper understanding of voltage-induced dielectric breakdown and electrical energy storage limitations is required. This dissertation presents the use of far-field optical second harmonic generation (SHG) polarimetry for probing structural defects and polar domains in linear and nonlinear perovskite dielectric ceramics. We investigated the formation of electric field-induced structural distortions at pristine Fe-doped SrTiO3 (Fe:STO) electrode interfaces, structural defect and strain formation due to oxygen vacancy migration in electrodegraded Fe:STO single crystals, and mixed tetragonal and rhombohedral phase domains in ferroelectric Zr-doped BaTiO3 (BZT) films ...


Relation Of Short-Range And Long-Range Lithium Ion Dynamics In Glass-Ceramics: Insights From Li-7 Nmr Field-Cycling And Field-Gradient Studies, Michael Haaks, Steve W. Martin, Michael Vogel 2017 Technische Universität Darmstadt

Relation Of Short-Range And Long-Range Lithium Ion Dynamics In Glass-Ceramics: Insights From Li-7 Nmr Field-Cycling And Field-Gradient Studies, Michael Haaks, Steve W. Martin, Michael Vogel

Materials Science and Engineering Publications

We use various Li-7 NMR methods to investigate lithium ion dynamics in 70Li(2)S-30P(2)S(5) glass and glass-ceramic obtained from this glass after heat treatment. We employ Li-7 spin-lattice relaxometry, including field-cycling measurements, and line-shape analysis to investigate short-range ion jumps as well as Li-7 field-gradient approaches to characterize long-range ion diffusion. The results show that ceramization substantially enhances the lithium ion mobility on all length scales. For the 70Li(2)S-30P(2)S(5) glass-ceramic, no evidence is found that bimodal dynamics result from different ion mobilities in glassy and crystalline regions of this sample. Rather ...


Optimization Of The Hot Embossing Parameters And Sintering Characterization For Alumina/Berea Sandstone Sintering, Justin F. Robbins 2017 Louisiana State University and Agricultural and Mechanical College

Optimization Of The Hot Embossing Parameters And Sintering Characterization For Alumina/Berea Sandstone Sintering, Justin F. Robbins

LSU Master's Theses

The purpose of this study is to investigate the process of hot embossing on alumina based ceramics as a cost-efficient procedure for manufacturing microfluidic testing components. Alumina ceramics were used as an exploratory phase for the final objective of the project, manufacturing of Berea sandstone based ceramic samples. Previous research has shown potential in using hot embossing on Alumina based ceramics; however, complications with extrusion and micro-structure quality were observed. For this reason, the research performed aimed to produce Berea Sandstone based components by first improving upon the embossing quality of alumina ceramics.

The thesis first investigates changes in the ...


First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi 2017 University of Tennessee, Knoxville

First-Principles Study Of Point Defect Behavior At Interfaces And In-Plane Strain Fields, Jianqi Xi

Doctoral Dissertations

Interfaces in solid materials are the so-called boundaries, separating crystals with the same structure and chemistry but different orientations, e.g. grain boundaries (GBs), different stacking sequences, e.g. stacking faults (SFs), or crystals with different structures and/or chemistries as well as orientations, e.g. the interface between substrate and thin film. In this study, first-principles calculations are used to investigate the defect behavior at different interfaces and in-plane strain fields, such as stacking fault (SF) in silicon carbide (SiC), in-plane strain field near interfaces in potassium tantalate (KTaO3), and grain boundary in ceria (CeO2).

Results show ...


Solvent Based 3d Printing Of Biopolymer/Bioactive Glass Composite And Hydrogel For Tissue Engineering Applications, Krishna Kolan, Yong Liu, Jakeb Baldridge, Caroline Murphy, Julie A. Semon, D. E. Day, Ming-Chuan Leu 2017 Missouri University of Science and Technology

Solvent Based 3d Printing Of Biopolymer/Bioactive Glass Composite And Hydrogel For Tissue Engineering Applications, Krishna Kolan, Yong Liu, Jakeb Baldridge, Caroline Murphy, Julie A. Semon, D. E. Day, Ming-Chuan Leu

Biological Sciences Faculty Research & Creative Works

Three-dimensional (3D) bioprinting is an emerging technology in which scaffolding materials and cell-laden hydrogels may be deposited in a pre-determined fashion to create 3D porous constructs. A major challenge in 3D bioprinting is the slow degradation of melt deposited biopolymer. In this paper, we describe a new method for printing poly-caprolactone (PCL)/bioactive borate glass composite as a scaffolding material and Pluronic F127 hydrogel as a cell suspension medium. Bioactive borate glass was added to a mixture of PCL and organic solvent to make an extrudable paste using one syringe while hydrogel was extruded and deposited in between the PCL ...


The Role Of Ceramic And Glass Science Research In Meeting Societal Challenges: Report From An Nsf-Sponsored Workshop, Katherine T. Faber, Tewodros Asefa, Monika Backhaus-Ricoult, Richard K. Brow, Julie Y. Chan, Shen Dillon, William Fahrenholtz, For full list of authors, see publisher's website. 2017 Missouri University of Science and Technology

The Role Of Ceramic And Glass Science Research In Meeting Societal Challenges: Report From An Nsf-Sponsored Workshop, Katherine T. Faber, Tewodros Asefa, Monika Backhaus-Ricoult, Richard K. Brow, Julie Y. Chan, Shen Dillon, William Fahrenholtz, For Full List Of Authors, See Publisher's Website.

Materials Science and Engineering Faculty Research & Creative Works

Under the sponsorship of the U.S. National Science Foundation, a workshop on emerging research opportunities in ceramic and glass science was held in September 2016. Reported here are proceedings of the workshop. The report details eight challenges identified through workshop discussions: Ceramic processing: Programmable design and assembly; The defect genome: Understanding, characterizing, and predicting defects across time and length scales; Functionalizing defects for unprecedented properties; Ceramic flatlands: Defining structure-property relations in free-standing, supported, and confined two-dimensional ceramics; Ceramics in the extreme: Discovery and design strategies; Ceramics in the extreme: Behavior of multimaterial systems; Understanding and exploiting glasses and melts ...


Silicon Carbide Materials Properties Selection For Mechanical Seal Faces, William Charles Hoskins 2017 University of Tennessee, Knoxville

Silicon Carbide Materials Properties Selection For Mechanical Seal Faces, William Charles Hoskins

Chancellor’s Honors Program Projects

No abstract provided.


Large Electrocaloric Responses In [Bi1/2(Na,K)1/2]Tio3‐Based Ceramics With Giant Electro‐Strains, Zhongming Fan, Xiaoming Liu, Xiaoli Tan 2017 Iowa State University

Large Electrocaloric Responses In [Bi1/2(Na,K)1/2]Tio3‐Based Ceramics With Giant Electro‐Strains, Zhongming Fan, Xiaoming Liu, Xiaoli Tan

Materials Science and Engineering Publications

The electrocaloric effect (ECE) is investigated through indirect measurement in two lead‐free [Bi1/2(Na,K)1/2]TiO3‐based ceramics that were previously reported to display giant electro‐strains. In the Nb‐doped ceramic, denoted as BNKT‐2.5Nb, a decent temperature change of ΔT=1.85 K and an electrocaloric responsivity of ΔTE=0.37 (10−6Km V−1) are found around room temperature (32°C). While in the Ta‐doped ceramic, BNKT‐1.5Ta, a wide operation temperature range (Tspan ~55 K) is observed near room temperature. Additional electrical measurements, as ...


The Role Of Ceramic And Glass Science Research In Meeting Societal Challenges: Report From An Nsf-Sponsored Workshop, Katherine T. Faber, Steve W. Martin, et al. 2017 California Institute of Technology

The Role Of Ceramic And Glass Science Research In Meeting Societal Challenges: Report From An Nsf-Sponsored Workshop, Katherine T. Faber, Steve W. Martin, Et Al.

Materials Science and Engineering Publications

Under the sponsorship of the U.S. National Science Foundation, a workshop on emerging research opportunities in ceramic and glass science was held in September 2016. Reported here are proceedings of the workshop. The report details eight challenges identified through workshop discussions: Ceramic processing: Programmable design and assembly; The defect genome: Understanding, characterizing, and predicting defects across time and length scales; Functionalizing defects for unprecedented properties; Ceramic flatlands: Defining structure-property relations in free-standing, supported, and confined two-dimensional ceramics; Ceramics in the extreme: Discovery and design strategies; Ceramics in the extreme: Behavior of multimaterial systems; Understanding and exploiting glasses and melts ...


Development Of Bs-Pt Based High Temperature Ultrasonic Transducer, Prathamesh N. Bilgunde, Leonard J. Bond 2017 Iowa State University

Development Of Bs-Pt Based High Temperature Ultrasonic Transducer, Prathamesh N. Bilgunde, Leonard J. Bond

Center for Nondestructive Evaluation Conference Papers, Posters and Presentations

High temperature (HT) environment in liquid metal cooled reactors poses major challenges towards development of ultrasonic transducer which is a key enabling technology for safety of reactors. In the current work, BS-PT (BiScO3- PbTiO3) piezoelectric material based ultrasonic transducer is proposed for the structural health monitoring at HT. Physics based model using finite element method simulates effect of temperature increase on the transduction ability of the BSPT piezoelectric material. Pulse-echo contact measurements are performed up to 260C which is the hot stand by temperature for liquid metal cooled reactors, to study the performance of the acoustic coupling agent and the ...


Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 900°C In Air And In Silicic Acid-Saturated Steam, Ronald K. Mitchell 2017 Air Force Institute of Technology

Creep Of Hi-Nicalon™ S Ceramic Fiber Tows At 900°C In Air And In Silicic Acid-Saturated Steam, Ronald K. Mitchell

Theses and Dissertations

Advanced SiC/SiC ceramic matrix composites (CMCs) are being considered for demanding aerospace applications such as aircraft engine hot-section components. In these applications the composites will be subjected to cyclic and sustained loadings at elevated temperature in aggressive combustion environments. Current aircraft engines employ Nickel-based superalloys in applications such turbine blades, where the metallic alloys must perform at or near their operating temperature limits in highly corrosive environments. The SiC/SiC composites, which offer low density, high strength and fracture toughness at elevated temperatures could potentially replace Nickel-based superalloy in aircraft engine applications. However, before the SiC/SiC composites can ...


Digital Commons powered by bepress