Open Access. Powered by Scholars. Published by Universities.®

Biology and Biomimetic Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

259 Full-Text Articles 457 Authors 79,208 Downloads 62 Institutions

All Articles in Biology and Biomimetic Materials

Faceted Search

259 full-text articles. Page 5 of 13.

Optimization Of Conditions For Production Of Mechanically Strong Suckerin Protein Hydrogels, Autumn Furniss 2019 The University of Akron

Optimization Of Conditions For Production Of Mechanically Strong Suckerin Protein Hydrogels, Autumn Furniss

Williams Honors College, Honors Research Projects

Hydrogels are polymer networks with a large water content. Uses include biomedical applications like drug delivery, wound dressing, and more. Current natural hydrogels lack mechanical robustness. Squid ringed teeth (completely protein) have a modulus comparable to thermoplastics; adding this to hydrogels could improve modulus while maintaining biocompatibility.

Three experiments were performed: Hofmeister solubility study, SRT powder additive, and SRT aqueous solution. The first showed that LiCl solution without acetic acid dissolved the most SRT; overall LiCl dissolved more than all others. SRT as a powder additive increased the modulus of the hydrogels, however the error in the measurements make it …


Tailoring Materials Behavior Using Geometry.Pdf, Hessein Ali, Hossein Ebrahimi, Ranajay Ghosh 2018 University of Central Florida

Tailoring Materials Behavior Using Geometry.Pdf, Hessein Ali, Hossein Ebrahimi, Ranajay Ghosh

Hossein Ebrahimi

Many applications require materials whose response can be tuned such as morphing wings for super maneuverable vehicles, soft robotics and space structures. Nature achieves this objective using external dermal features – skin, furs, tooth, feathers. These nonlinearities are generated using the geometry and topology of the scales. The scales provide distinct structural advantages such as protection and tailorable response from scales contact. Scales also aid in highly dynamic life functions – such as locomotion, anti anti-fouling, flapping flights, swimming. Material to structural correlations are highly nonlinear due to scale topology. We aim to reveal structure structure-propertyproperty-architecture correlations for automated 3D …


Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath 2018 University of Louisville

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison …


A Systematic Investigation Of Condensation Heat Transfer Using Asymmetric Micro-Scale Surfaces, Emily Brown 2018 Louisiana State University and Agricultural and Mechanical College

A Systematic Investigation Of Condensation Heat Transfer Using Asymmetric Micro-Scale Surfaces, Emily Brown

LSU Master's Theses

Asymmetric surfaces been shown to inducing unidirectional motion in the Leidenfrost regime; however, very minimal research has been conducted to investigate whether these surface can enhance condensation through the same means. The investigation of heat transfer of ratchets in condensation is a relatively untapped area of study, specifically ratchets with superhydrophobic properties. Anticipated difficulty lies in creating surfaces features or coatings that retain the ratchets and can adequately sustain optimal wetting state of Cassie-Baxter required to improve heat transfer performance during condensation. This study serves to investigate whether ratchets are a feasible surface feature to enhance condensation heat transfer. First, …


Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li 2018 The University of Western Ontario

Electrospun Collagen Fibers For Tissue Regeneration Applications, Ying Li

Electronic Thesis and Dissertation Repository

Tissue engineering aims to regenerate damaged and deceased tissue by combining cells with scaffold made from an appropriate biomaterial and providing a conducive environment to guide cell growth and the formation or regeneration of new tissue or organ. While collagen, an important material of the extracellular matrix (ECM), is a natural choice as a scaffold biomaterial, the conducive environment can only be created by having the ability to control the geometry, organization, structural and mechanical properties of the scaffold. Moreover, degradability and degradation rate control of the scaffold has to be taken into consideration too. In this work, we aim …


Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker 2018 Indiana University of Pennsylvania

Developing Strategies To Toughen Bio-Inspired Adhesives, Narelli P. Narciso, Samuel Lee Huntington, Jonathan J. Wilker

The Summer Undergraduate Research Fellowship (SURF) Symposium

Mussels and other marine creatures adhere very well in underwater environments, having the ability to withstand the force of the sea. These animals have inspired synthetic biomimetic adhesives for wet systems, presenting potential for biomedical applications. However, most current commercial adhesives tend to be brittle, not resisting repetitive movements. This study assesses toughening strategies to improve the mussel-inspired adhesives’ ductility while maintaining its strength. The strategies included altering the polymer’s chemical structure by changing the percentage of polyethylene glycol (PEG) in the molecule and by adding fillers, such as calcium carbonate, silica and nacre - a calcium carbonate compound found …


Application Of Nano-Plasmonics For Sers Bio-Detection And Photocatalysis In The Same Platform, Muhammad R. Shattique 2018 Missouri State University

Application Of Nano-Plasmonics For Sers Bio-Detection And Photocatalysis In The Same Platform, Muhammad R. Shattique

MSU Graduate Theses

Nano-biological systems interfacing nano-structured solid surfaces with biological compounds such as oligonucleotides or proteins are highly regarded as enabling materials for biosensing and biocatalysis applications. In particular, nanostructures of noble metals such as gold or silver, when exposed to light, exhibit a phenomenon known as surface plasmon resonance. When a proper metal nanostructure (plasmonic substrate) is exposed to light, very efficient absorption of incoming photons is possible, resulting in a buildup of localized high-energy regions, or “hot-spots”, where energetic carriers or “hot carriers” can be created. These hot-carriers can be used to catalyze desired chemical transformations in materials located nearby. …


Cellulose Nanofiber Biotemplated Palladium Composite Aerogels., Fred J Burpo, Alexander N Mitropoulos, Enoch A Nagelli, Jesse L Palmer CDT'19, Lauren A Morris, Madeline Y Ryu CDT'19, J Kenneth Wickiser 2018 United States Military Academy

Cellulose Nanofiber Biotemplated Palladium Composite Aerogels., Fred J Burpo, Alexander N Mitropoulos, Enoch A Nagelli, Jesse L Palmer Cdt'19, Lauren A Morris, Madeline Y Ryu Cdt'19, J Kenneth Wickiser

West Point Research Papers

Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity. Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications. However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol⁻gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts. Here, we present the synthesis of palladium aerogels using carboxymethyl cellulose nanofiber (CNF) biotemplates that provide control over aerogel shape, pore size, and conductivity. Biotemplate hydrogels were formed via covalent cross linking using 1-ethyl-3-(3-dimethylaminopropyl) …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian 2018 The University of Western Ontario

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman 2018 Southern Methodist University

Soft-Microrobotics: The Manipulation Of Alginate Artificial Cells, Samuel Sheckman

Mechanical Engineering Research Theses and Dissertations

In this work, the approach to the manipulation of alginate artificial cell soft-microrobots, both individually and in swarms is shown. Fabrication of these artificial cells were completed through centrifugation, producing large volumes of artificial cells, encapsulated with superparamagnetic iron oxide nanoparticles; these artificial cells can be then externally stimulated by an applied magnetic field. The construction of a Permeant Magnet Stage (PMS) was produced to manipulate the artificial cells individually and in swarms. The stage functionalizes the permanent magnet in the 2D xy-plane. Once the PMS was completed, Parallel self-assembly (Object Particle Computation) using swarms of artificial cells in complex …


Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi 2018 State University of New York College at Buffalo - Buffalo State College

Accelerated Creative Problem Solving And Product Improvement Applied To Experimental Devices In A Bloodstain Pattern Interpretation Class--Improving The Role Of Insight Development Tools As A Generator Of New Ideas In Novel Situations, Douglas Ridolfi

Creative Studies Graduate Student Master's Projects

This project uses an action research centered study protocol to examine the effects of a problem-based learning exercise related to bloodstain pattern interpretation in a crime scene processing and general criminalistics class taught as part of an upper division forensic chemistry major in a four year college. The goal is to apply design principles and creative problem solving methods directly adapted to a project involving interpreting a set of crime scene photographs depicting blood spatter and with the aid of guided exercises in ideation and design, lead students into the development of alternate theories of how the bloodstains were created …


Thiol–Ene Photopolymerization: A Simple Route To Pro-Antimicrobial Networks Via Degradable Acetals (Pandas), William Martin 2018 University of Southern Mississippi

Thiol–Ene Photopolymerization: A Simple Route To Pro-Antimicrobial Networks Via Degradable Acetals (Pandas), William Martin

Honors Theses

The World Health Organization (WHO) has brought the growing epidemic of antibiotic resistance bacteria to the attention of the public and has expressed the need for the development of new methods of defense. In this direction, bioactive aldehyde essential oils have been shown to effectively act as antibiotic and antifungal agents. These bioactive compounds, when used in their pure form, are volatile and lack environmental stability. In this thesis, we describe the synthesis of pro-antimicrobial networks via degradable acetals (PANDAs) using thiol-ene photopolymerization. PANDAs were used as a new model for the high loading and release of bioactive aldehyde-containing compounds …


Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer 2018 University of Louisville

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal 2018 The University of Western Ontario

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Raman Spectroscopy Of The Skeleton Of The Coral Acropora Cervicornis, Zachary C. Shepard 2018 University of Central Florida

Raman Spectroscopy Of The Skeleton Of The Coral Acropora Cervicornis, Zachary C. Shepard

Honors Undergraduate Theses

Coral reefs are an important element of marine ecosystem that are critical to maintain a healthy environment. Unfortunately, in recent years coral reefs are doing poorly and many in parts of the ocean are simply dying. Therefore, study of coral’s structural response to external loads could answer what will happen with their structures, while they exhibit different types of loading. Therefore, the proposition of using in-situ micro-Raman spectroscopy to study skeletons of Acropora cervicornis was used. Coral skeleton samples I subjected to mechanical loading studied their vibrational properties by exciting the material with 532nm visible light. A uniaxial compressive load …


Advanced Nanoscale Characterization Of Plants And Plant-Derived Materials For Sustainable Agriculture And Renewable Energy, Mikhael Soliman 2018 University of Central Florida

Advanced Nanoscale Characterization Of Plants And Plant-Derived Materials For Sustainable Agriculture And Renewable Energy, Mikhael Soliman

Electronic Theses and Dissertations

The need for nanoscale, non-invasive functional characterization has become more significant with advances in nano-biotechnology and related fields. Exploring the ultrastructure of plant cell walls and plant-derived materials is necessary to access a more profound understanding of the molecular interactions in the systems, in view of a rational design for sustainable applications. This, in turn, relates to the pressing requirements for food, energy and water sustainability experienced worldwide. Here we will present our advanced characterization approach to study the effects of external stresses on plants, and resulting opportunities for biomass valorization with an impact on the food-energy-water nexus. First, the …


Influence Of Chitosan-Alginate Scaffold Stiffness On Bone Marrow Stromal Cell Differentiation, Isabel Arias Ponce 2018 University of Central Florida

Influence Of Chitosan-Alginate Scaffold Stiffness On Bone Marrow Stromal Cell Differentiation, Isabel Arias Ponce

Electronic Theses and Dissertations

Tissue grafts are the gold standard for replacing large volume tissue defects. Yet, they present several risks, including infection, low functional outcomes, and reduced graft integrity. Tissue engineering (TE) combines cells and biomaterial scaffolds to foster tissue growth and remodeling. Bone marrow stromal cells (BMSCs) have been shown to respond to the stiffness of their microenvironment, resulting in differentiation into different lineages. 3D porous chitosan-alginate (CA) scaffolds have been previously demonstrated for bone TE with osteoblasts and BMSCs; however, only a single scaffold composition (4 wt%) was studied. Three CA scaffold compositions (2, 4, 6 wt% CA) were produced. Scanning …


Cell Printing: An Effective Advancement For The Creation Of Um Size Patterns For Integration Into Microfluidic Biomems Devices, Megan Aubin 2018 University of Central Florida

Cell Printing: An Effective Advancement For The Creation Of Um Size Patterns For Integration Into Microfluidic Biomems Devices, Megan Aubin

Electronic Theses and Dissertations

The Body-on-a-Chip (BoaC) is a microfluidic BioMEMs project that aims to replicate major organs of the human body on a chip, providing an in vitro drug testing platform without the need to resort to animal model testing. Using a human model also provides significantly more accurate drug response data, and may even open the door to personalized drug treatments. Microelectrode arrays integrated with human neuronal or human cardiac cells that are positioned on the electrodes are essential components for BoaC systems. Fabricating these substrates relies heavily on chemically patterned surfaces to control the orientation and growth of the cells. Currently, …


An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal 2018 Michigan Technological University

An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal

Dissertations, Master's Theses and Master's Reports

After injury, wound healing is a complex sequential cascade of events essential for the proper recovery of the wound without the scar formation. Nitric oxide (NO) is a small, endogenous free-radical gas with antimicrobial, vasodilating and growth factor stimulating properties. NO has wide biomedical application especially in wound healing however, its usability is hindered due its administration problem as it is highly unstable.

In this work, poly (l-lactic acid) microparticles encapsulated with NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) were prepared using water-in-oil-water double emulsion solvent evaporation method for controlled delivery for NO at the specific site. The NO release from SNAP-PLLA microparticles …


Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang 2018 Michigan Technological University

Studying Mass And Mechanical Property Changes During The Degradation Of A Bioadhesive With Mass Tracking, Rheology And Magnetoelastic (Me) Sensors, Zhongtian Zhang

Dissertations, Master's Theses and Master's Reports

In this research, the degradable polymer 4-arm poly (ethylene glycol)-glutaric acid-dopamine (PEG-GA-DM4) was synthesized. The degradation behavior of crosslinked PEG-GA-DM4 bioadhesive was studied with mass tracking, oscillatory rheology, and magnetoelastic (ME) sensors. Changes in mechanical properties were correlated with both dry mass and wet mass changes during the degradation. The results indicate that the loss of mechanical property in the bioadhesive can take place without losing the dry mass. The mass loss profile cannot describe the degradation behavior completely. In addition to studying the degradation of PEG-GA-DM4, this research also confirms the application of ME …


Digital Commons powered by bepress