Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

4,773 Full-Text Articles 10,030 Authors 1,514,299 Downloads 128 Institutions

All Articles in Engineering Science and Materials

Faceted Search

4,773 full-text articles. Page 89 of 162.

Quantification Of Re-Absorption And Re-Emission Processes To Determine Photon Recycling Efficiency In Perovskite Single Crystals, Yanjun Fang, Haotong Wei, Qingfeng Dong, Jinsong Huang 2017 University of Nebraska-Lincoln

Quantification Of Re-Absorption And Re-Emission Processes To Determine Photon Recycling Efficiency In Perovskite Single Crystals, Yanjun Fang, Haotong Wei, Qingfeng Dong, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Photon recycling, that is, iterative self-absorption and re-emission by the photoactive layer itself, has been speculated to contribute to the high open-circuit voltage in several types of high efficiency solar cells. For organic–inorganic halide perovskites that have yielded highly efficient photovoltaic devices, however, it remains unclear whether the photon recycling effect is significant enough to improve solar cell efficiency. Here we quantitatively evaluate the re-absorption and re-emission processes to determine photon recycling efficiency in hybrid perovskite with its single crystals by measuring the ratio of the re-emitted photons to the initially excited photons, which is realized by modulating their polarization …


Low-Drag Events In Transitional Wall-Bounded Turbulence, Richard D. Whalley, Jae Sung Park, Anubhav Kushwaha, David J.C. Dennis, Michael D. Graham, Robert J. Poole 2017 Newcastle University

Low-Drag Events In Transitional Wall-Bounded Turbulence, Richard D. Whalley, Jae Sung Park, Anubhav Kushwaha, David J.C. Dennis, Michael D. Graham, Robert J. Poole

Department of Mechanical and Materials Engineering: Faculty Publications

Intermittency of low-drag pointwise wall shear stress measurements within Newtonian turbulent channel flow at transitional Reynolds numbers (friction Reynolds numbers 70 – 130) is characterized using experiments and simulations. Conditional mean velocity profiles during low-drag events closely approach that of a recently discovered nonlinear traveling wave solution; both profiles are near the so-called maximum drag reduction profile, a general feature of turbulent flow of liquids containing polymer additives (despite the fact that all results presented are for Newtonian fluids only). Similarities between temporal intermittency in small domains and spatiotemporal intermittency in large domains is thereby found.


Atomically Informed Nonlocal Semidiscrete Variational Peierls-Nabarro Model For Planar Core Dislocations, Guisen Liu, Xi Cheng, Jian Wang, Kaiguo Chen, Yao Shen 2017 Shanghai Jiao Tong University

Atomically Informed Nonlocal Semidiscrete Variational Peierls-Nabarro Model For Planar Core Dislocations, Guisen Liu, Xi Cheng, Jian Wang, Kaiguo Chen, Yao Shen

Department of Mechanical and Materials Engineering: Faculty Publications

Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be …


Fluid-Structure Interaction In Abdominal Aortic Aneurysm: Effect Of Modeling Techniques, Shengmao Lin, Xinwei Han, Yonghua Bi, Siyeong Ju, Linxia Gu 2017 Xiamen University of Technology

Fluid-Structure Interaction In Abdominal Aortic Aneurysm: Effect Of Modeling Techniques, Shengmao Lin, Xinwei Han, Yonghua Bi, Siyeong Ju, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

In this work, the impact of modeling techniques on predicting the mechanical behaviors of abdominal aortic aneurysm (AAA) is systematically investigated. The fluid-structure interaction (FSI) model for simultaneously capturing the transient interaction between blood flow dynamics and wall mechanics was compared with its simplified techniques, that is, computational fluid dynamics (CFD) or computational solid stress (CSS) model. Results demonstrated that CFD exhibited relatively smaller vortexes and tends to overestimate the fluid wall shear stress, compared to FSI. On the contrary, the minimal differences in wall stresses and deformation were observed between FSI and CSS models. Furthermore, it was found that …


High Temperature Near-Field Nanothermomechanical Rectification, Mahmoud Elzouka, Sidy Ndao 2017 University of Nebraska-Lincoln

High Temperature Near-Field Nanothermomechanical Rectification, Mahmoud Elzouka, Sidy Ndao

Department of Mechanical and Materials Engineering: Faculty Publications

Limited performance and reliability of electronic devices at extreme temperatures, intensive electromagnetic fields, and radiation found in space exploration missions (i.e., Venus & Jupiter planetary exploration, and heliophysics missions) and earth-based applications requires the development of alternative computing technologies. In the pursuit of alternative technologies, research efforts have looked into developing thermal memory and logic devices that use heat instead of electricity to perform computations. However, most of the proposed technologies operate at room or cryogenic temperatures, due to their dependence on material’s temperature-dependent properties. Here in this research, we show experimentally—for the first time—the use of near-field thermal radiation …


Surface Charge Switchable And Ph-Responsive Chitosan/Polymer Core-Shell Composite Nanoparticles For Drug Delivery Application, W. F. Huang, C. P. Tsui, M. Yang, Linxia Gu 2017 Hong Kong Polytechnic University

Surface Charge Switchable And Ph-Responsive Chitosan/Polymer Core-Shell Composite Nanoparticles For Drug Delivery Application, W. F. Huang, C. P. Tsui, M. Yang, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

The mutually conflicting surface charge requirements for nanoparticles to have long circulation and good cell affinity have made the development of polymer nanoparticles for controlled drug delivery fall into a dilemma. In order to solve this problem, the first attempt has been made in this work to develop vancomycin loaded composite nanoparticles with a novel chitosan core and poly (lactide-co-glycolide) (PLGA) shell structure and with both pH-responsive and surface charge switchable properties. Spherical composite nanoparticles have been successfully fabricated through a modified emulsion-gelation method with a controllable size (316–573 nm), surface charge (–27.6–31.75 mV) and encapsulation efficiency up to 70.8%. …


Helium Irradiation And Implantation Effects On The Structure Of Amorphous Silicon Oxycarbide, Qing Su, Shinsuke Inoue, Manabu Ishimaru, Jennifer A. Gigax, Tianyao Wang, Hepeng Ding, Michael J. Demkowicz, Lin Shao, Michael Nastasi 2017 University of Nebraska-Lincoln

Helium Irradiation And Implantation Effects On The Structure Of Amorphous Silicon Oxycarbide, Qing Su, Shinsuke Inoue, Manabu Ishimaru, Jennifer A. Gigax, Tianyao Wang, Hepeng Ding, Michael J. Demkowicz, Lin Shao, Michael Nastasi

Department of Mechanical and Materials Engineering: Faculty Publications

Despite recent interest in amorphous ceramics for a variety of nuclear applications, many details of their structure before and after irradiation/implantation remain unknown. Here we investigated the short-range order of amorphous silicon oxycarbide (SiOC) alloys by using the atomic pair-distribution function (PDF) obtained from electron diffraction. The PDF results show that the structure of SiOC alloys are nearly unchanged after both irradiation up to 30 dpa and He implantation up to 113 at%. TEM characterization shows no sign of crystallization, He bubble or void formation, or segregation in all irradiated samples. Irradiation results in a decreased number of Si-O bonds …


Molecular Dynamics Simulations Of Heterogeneous Cell Membranes In Response To Uniaxial Membrane Stretches At High Loading Rates, Lili Zhang, Zesheng Zhang, John Jasa, Dongli Li, Robin O. Cleveland, Mehrdad Negahban, Antoine Jérusalem 2017 University of Oxford

Molecular Dynamics Simulations Of Heterogeneous Cell Membranes In Response To Uniaxial Membrane Stretches At High Loading Rates, Lili Zhang, Zesheng Zhang, John Jasa, Dongli Li, Robin O. Cleveland, Mehrdad Negahban, Antoine Jérusalem

Department of Mechanical and Materials Engineering: Faculty Publications

The chemobiomechanical signatures of diseased cells are often distinctively different from that of healthy cells. This mainly arises from cellular structural/compositional alterations induced by disease development or therapeutic molecules. Therapeutic shock waves have the potential to mechanically destroy diseased cells and/or increase cell membrane permeability for drug delivery. However, the biomolecular mechanisms by which shock waves interact with diseased and healthy cellular components remain largely unknown. By integrating atomistic simulations with a novel multiscale numerical framework, this work provides new biomolecular mechanistic perspectives through which many mechanosensitive cellular processes could be quantitatively characterised. Here we examine the biomechanical responses of …


Controllable Energy Absorption Of Double Sided Corrugated Tubes Under Axial Crushing, Hozhabr Mozafari, Shengmao Lin, Linxia Gu 2017 University of Nebraska-Lincoln

Controllable Energy Absorption Of Double Sided Corrugated Tubes Under Axial Crushing, Hozhabr Mozafari, Shengmao Lin, Linxia Gu

Department of Mechanical and Materials Engineering: Faculty Publications

To maximize the controllable energy absorption of corrugation troughs as observed in the single sided corrugated (SSC) tube, we proposed and tested a new structure design, i.e., double-sided corrugated (DSC) tube made of Al 6060-T6 aluminum alloy or CF1263 carbon/epoxy composite. Finite element models were developed to test the mechanical advantage of the DSC tube in comparison with both SSC and classical straight (S) tubes under axial crushing. Results have shown that the total absorbed energy of the DSC aluminum tube with 14 corrugations was 330% and 32% higher than that of the SSC tube with 14 corrugations and the …


Novel Polyethylene Fibers Of Very High Thermal Conductivity Enabled By Amorphous Restructuring, Bowen Zhu, Jing Liu, Tianyu Wang, Shah R. Valloppilly, Shen Xu, Xinwei Wang 2017 Iowa State University

Novel Polyethylene Fibers Of Very High Thermal Conductivity Enabled By Amorphous Restructuring, Bowen Zhu, Jing Liu, Tianyu Wang, Shah R. Valloppilly, Shen Xu, Xinwei Wang

Department of Mechanical and Materials Engineering: Faculty Publications

High-thermal-conductivity polymers are very sought after for applications in various thermal management systems. Although improving crystallinity is a common way for increasing the thermal conductivity (k) of polymers, it has very limited capacity when the crystallinity is already high. In this work, by heat-stretching a highly crystalline microfiber, a significant k enhancement is observed. More interestingly, it coincides with a reduction in crystallinity. The sample is a Spectra S-900 ultrahigh-molecular-weight polyethylene (UHMW-PE) microfiber of 92% crystallinity and high degree of orientation. The optimum stretching condition is 131.5 °C, with a strain rate of 0.0129 s−1 to a low strain ratio …


The Effect Of Number Of Corrugation On Crashworthiness Of Aluminum Corrugated Tube Under Lateral Loading, Hozhabr Mozafari, Arameh Eyvazian, Abdel Magid Hamouda 2017 University of Nebraska-Lincoln

The Effect Of Number Of Corrugation On Crashworthiness Of Aluminum Corrugated Tube Under Lateral Loading, Hozhabr Mozafari, Arameh Eyvazian, Abdel Magid Hamouda

Department of Mechanical and Materials Engineering: Faculty Publications

Thin-walled tubes have been developed and are growing in use as new energy absorber structures. The objective of this study is to investigate the energy absorption and crushing characteristics of corrugated tubes with different number of corrugation in a specific length exposed to lateral loading. At the first step, experimental tests were carried out on a corrugated tube with three con'ugations (two inner and one outer) and a tube without corrugation. After that, a finite element model was developed by means of ABAQUS software in order to study the effect of corrugation number on crushing properties of thin-walled tubes. The …


Review Of Sustainability Issues In Non-Traditional Machining Processes, Kamlakar Rajurkar, H. Hadidi, J. Pariti, G. C. Reddy 2017 University of Nebraska-Lincoln

Review Of Sustainability Issues In Non-Traditional Machining Processes, Kamlakar Rajurkar, H. Hadidi, J. Pariti, G. C. Reddy

Department of Mechanical and Materials Engineering: Faculty Publications

Non-traditional machining processes (such as EDM and ECM) provide alternatives or sometimes the only alternative in generating highly complex 3-D features in very difficult-to -machine materials. This paper reviews recently published work on sustainability issues related to these processes. For example in Electrochemical machining (ECM) the effect of sludge generation and selection of dielectric in Electrodischarge machining (EDM) need to be investigated from the sustainability point of view. All processes need to be studied not only for resulting productivity and accuracy but also their environmental impact during product generation and usage. This paper addresses process mechanisms, surface integrity, sensing and …


Growth Mechanisms Of Multiscale, Mound-Like Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Ryan Bell, Craig A. Zuhlke, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield 2017 University of Nebraska-Lincoln

Growth Mechanisms Of Multiscale, Mound-Like Surface Structures On Titanium By Femtosecond Laser Processing, Edwin Peng, Ryan Bell, Craig A. Zuhlke, Meiyu Wang, Dennis R. Alexander, George Gogos, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Faculty Publications

Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser …


Robotic Surgical Devices, Systems, And Related Methods, Shane M. Farritor, Erik Mumm, Philip Chu, Nishant Kumar, Jason Dumpert, Yutaka Tsutano 2017 University of Nebraska-Lincoln

Robotic Surgical Devices, Systems, And Related Methods, Shane M. Farritor, Erik Mumm, Philip Chu, Nishant Kumar, Jason Dumpert, Yutaka Tsutano

Department of Mechanical and Materials Engineering: Faculty Publications

The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various modular medical devices for in vivo medical procedures.


Methods, Systems, And Devices For Surgical Visualization And Device Manipulation, Shane M. Farritor, Mark Rentschler, Amy Lehman, Nathan A. Wood, Adam Bock, Reed Prior 2017 University of Nebraska-Lincoln

Methods, Systems, And Devices For Surgical Visualization And Device Manipulation, Shane M. Farritor, Mark Rentschler, Amy Lehman, Nathan A. Wood, Adam Bock, Reed Prior

Department of Mechanical and Materials Engineering: Faculty Publications

A surgical device includes a console having a visual display and a manipulator arm, a robotic device having a camera and a connection component. The robotic device is configured to be positioned completely within a body cavity. The camera is configured to transmit visual images to the visual display. The connection component operably couples the console and the robotic device. The manipulator arm is positioned relative to the visual display so as to appear to be penetrating the visual display.


Local And Segmental Motions Of The Mobile Amorphous Fraction In Semi-Crystalline Polylactide Crystallized Under Quiescent And Flow-Induced Conditions, Xavier Monnier, Laurence Chevalier, Antonello Esposito, Lucia Fernandez-Ballester, Allisson Saiter, Eric Dargent 2017 Normandie Université

Local And Segmental Motions Of The Mobile Amorphous Fraction In Semi-Crystalline Polylactide Crystallized Under Quiescent And Flow-Induced Conditions, Xavier Monnier, Laurence Chevalier, Antonello Esposito, Lucia Fernandez-Ballester, Allisson Saiter, Eric Dargent

Department of Mechanical and Materials Engineering: Faculty Publications

The molecular dynamics of the constrained and unconstrained mobile amorphous fractions in semicrystalline polylactide (PLA) was investigated in the presence of both flow-induced crystalline structures and spherulites by fast scanning calorimetry (FSC) through cooperativity and physical aging concepts. First, the shear rate conditions leading to flow-induced crystallization were characterized by examining the relaxation of shear-induced precursors. At a temperature of 150 °C, the critical relaxation time is so long that cooling down the sheared melt to the crystallization temperature does not affect significantly the precursors. Therefore, highly oriented structures develop. The arrangement of the crystalline fraction, either in flow-induced crystalline …


Effect Of Random Ethylene Comonomer On Relaxation Of Flow-Induced Precursors In Isotactic Polypropylene, Benjamin Schammé, Eric Dargent, Lucia Fernandez-Ballester 2017 University of Nebraska-Lincoln

Effect Of Random Ethylene Comonomer On Relaxation Of Flow-Induced Precursors In Isotactic Polypropylene, Benjamin Schammé, Eric Dargent, Lucia Fernandez-Ballester

Department of Mechanical and Materials Engineering: Faculty Publications

The effect of comonomer on structure and relaxation of flow-induced precursors was investigated in a series of isotactic polypropylene and random propylene−ethylene copolymers. The polymers were subjected to flow by fiber pulling and allowed to relax above their nominal melting temperature for specific times. The type of morphology developed after cooling revealed whether flow-induced precursors were still present or the melt had fully reequilibrated. Precursors were long-lived and, at fixed temperature, decayed significantly faster with higher ethylene content. The critical time for precursor relaxation followed an Arrhenius-type dependence with temperature. The apparent energy of activation for precursor dissolution decreased with …


Rapidly Solidified Rare-Earth Permanent Magnets: Processing, Properties, And Applications, Shampa Aich, Dillip K. Satapathy, Jeffrey E. Shield 2017 Indian Institute of Technology Kharagpur

Rapidly Solidified Rare-Earth Permanent Magnets: Processing, Properties, And Applications, Shampa Aich, Dillip K. Satapathy, Jeffrey E. Shield

Department of Mechanical and Materials Engineering: Faculty Publications

Rapidly solidified rare-earth-based permanent magnets are considered to have better potential as permanent magnets compared to the conventional bulk materials, which can be attributed to their improved microstructure and better magnetic properties compared to rare-earth magnets synthesized by the conventional (powder metallurgy) routes. The performance (quality) of these magnets depends on the thermodynamics and kinetics of the different processing routes, such as atomization, melt spinning, and melt extraction. Here, we review the various processing routes of rapidly solidified rare-earth permanent magnets and the related properties and applications. In the review, some specific alloy systems, such as Sm–Co-based alloys, Nd–Fe–B, and …


Biodegradable Elastic Nanofibrous Platforms With Integrated Flexible Heaters For On-Demand Drug Delivery, Ali Tamayol, Alireza Hassani Najafabadi, Pooria Mostafalu, Ali K. Yetisen, Mattia Commotto, Musab Aldhahri, Mohamed Shaaban Abdel-wahab, Zeynab Izadi Najafabadi, Shahrzad Latifi, Mohsen Akbari, Nasim Annabi, Seok Hyun Yun, Adnan Memic, Mehmet R. Dokmeci, Ali Khademhosseini 2017 Harvard Medical School

Biodegradable Elastic Nanofibrous Platforms With Integrated Flexible Heaters For On-Demand Drug Delivery, Ali Tamayol, Alireza Hassani Najafabadi, Pooria Mostafalu, Ali K. Yetisen, Mattia Commotto, Musab Aldhahri, Mohamed Shaaban Abdel-Wahab, Zeynab Izadi Najafabadi, Shahrzad Latifi, Mohsen Akbari, Nasim Annabi, Seok Hyun Yun, Adnan Memic, Mehmet R. Dokmeci, Ali Khademhosseini

Department of Mechanical and Materials Engineering: Faculty Publications

Delivery of drugs with controlled temporal profiles is essential for wound treatment and regenerative medicine applications. For example, bacterial infection is a key challenge in the treatment of chronic and deep wounds. Current treatment strategies are based on systemic administration of high doses of antibiotics, which result in side effects and drug resistance. On-demand delivery of drugs with controlled temporal profile is highly desirable. Here, we have developed thermally controllable, antibiotic-releasing nanofibrous sheets. Poly(glycerol sebacate)- poly(caprolactone) (PGS-PCL) blends were electrospun to form elastic polymeric sheets with fiber diameters ranging from 350 to 1100 nm and substrates with a tensile modulus …


Development Of A Test Level 3 Transition Between Guardrail And Portable Concrete Barriers, Robert W. Bielenberg, David Gutierrez, Ronald K. Faller, John D. Reid, Phil Tenhulzen 2017 University of Nebraska - Lincoln

Development Of A Test Level 3 Transition Between Guardrail And Portable Concrete Barriers, Robert W. Bielenberg, David Gutierrez, Ronald K. Faller, John D. Reid, Phil Tenhulzen

Department of Civil and Environmental Engineering: Faculty Publications

Road construction often requires that work zones be created and shielded by portable concrete barriers (PCBs) to protect workers and equipment from errant vehicles as well as to prevent motorists from striking other roadside hazards. For an existing W-beam guardrail system installed adjacent to the roadway and near the work zone, guardrail sections are removed so a PCB system can be placed. A study was done to develop a crashworthy transition between W-beam guardrail and PCB systems. Design concepts were developed and refined through computer simulation with LS-DYNA. Additionally, a study of critical impact points was conducted to determine impact …


Digital Commons powered by bepress