Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

2,671 Full-Text Articles 3,929 Authors 952,013 Downloads 94 Institutions

All Articles in Engineering Science and Materials

Faceted Search

2,671 full-text articles. Page 8 of 82.

Dynamic Behavior Of Granular Earth Materials Subjected To Pressure-Shear Loading, Jeff Wilson LaJeunesse 2018 Marquette University

Dynamic Behavior Of Granular Earth Materials Subjected To Pressure-Shear Loading, Jeff Wilson Lajeunesse

Dissertations (2009 -)

The dynamic response of granular earth materials such as sand has been of interest for many years. Multiple previous works have explored the shock response of sand in various grain shapes, sizes, and moisture contents, but the response during rapid combined loading has been relatively unexplored. The current study contributes to that lack of data by performing pressure-shear experiments on Oklahoma #1 silica sand, with quasi-smooth grains of 63 - 120 micron diameter and 99.8 wt.% Si02 composition. In these experiments, an oblique flyer plate impacts an equally inclined target, imparting a longitudinal (pressure) and transverse (shear) wave into a ...


Continuous Flow Process For Recovery Of Metal Contaminants From Industrial Wastewaters With Magnetic Nanocomposites, David Hutchins 2018 Montana Tech

Continuous Flow Process For Recovery Of Metal Contaminants From Industrial Wastewaters With Magnetic Nanocomposites, David Hutchins

Graduate Theses & Non-Theses

Remediation of metal-containing industrial effluents presents both a technical challenge and an economic opportunity. Many industrial waste streams contain low levels of metal ions requiring treatment prior to discharge. Existing treatment technologies are frustrated by disparate compositions and low metal concentrations. Chemical precipitation is effective; however, it requires excessive reagents and discourages selective recovery. Ion-exchange enables recovery, but requires a batch process with extensive operational and maintenance demands, and is rarely implemented in large-scale applications. A continuous flow process capable of selective recovery would present many advantages over existing technologies.

This research examines and develops a continuous flow process for ...


Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini 2018 Harvard Medical School

Smart Bandage For Monitoring And Treatment Of Chronic Wounds, Pooria Mostafalu, Ali Tamayol, Rahim Rahimi, Manuel Ochoa, Akbar Khalilpour, Gita Kiaee, Iman K. Yazdi, Sara Bagherifard, Mehmet R. Dokmeci, Babak Ziaie, Sameer R. Sonkusale, Ali Khademhosseini

Mechanical & Materials Engineering Faculty Publications

Chronic wounds are a major health concern and they affect the lives of more than 25 million people in the United States. They are susceptible to infection and are the leading cause of nontraumatic limb amputations worldwide. The wound environment is dynamic, but their healing rate can be enhanced by administration of therapies at the right time. This approach requires real-time monitoring of the wound environment with on-demand drug delivery in a closed-loop manner. In this paper, a smart and automated flexible wound dressing with temperature and pH sensors integrated onto flexible bandages that monitor wound status in real-time to ...


Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu 2018 University of Nebraska-Lincoln

Migration Resistance Of Esophageal Stents: The Role Of Stent Design, Hozhabr Mozafari, Pengfei Dong, Shijia Zhao, Yonghua Bi, Xinwei Han, Linxia Gu

Mechanical & Materials Engineering Faculty Publications

Objective: Stenting is one of the major treatments for malignant esophageal cancer. However, stent migration compromises clinical outcomes. A flared end design of the stent diminishes its migration. The goal of this work is to quantitatively characterize stent migration to develop new strategies for better clinical outcomes.

Methods: An esophageal stent with flared ends and a straight counterpart were virtually deployed in an esophagus with asymmetric stricture using the finite element method. The resulted esophagus shape, wall stress, and migration resistance force of the stent were quantified and compared.

Results: The lumen gain for both the flared stent and the ...


Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks 2018 Chulalongkorn University Demonstration Secondary School

Energy Conversion System For Travelers (Ecost), Thipok Bovornratanaraks

The International Student Science Fair 2018

We have innovated “The Energy Conversion System for Travelers” or the ECoST. With the fact that most travelers have wheeled cabin-bags, whilst walking, the wheels will rotate so why don’t we harvest electricity from this kinetic energy? We thus install our innovation, the ECoST, to the bag to generate electricity from the spinning wheels. The electricity is then kept in the storage unit and ready to charge your empty battery devices in an emergency case via a USB port. To make life easy, our ECoST was designed to replicate the power bank charging method; therefore, we can charge it ...


A Coupled Thermo-Mechanical Theory Of Strain Gradient Plasticity For Small And Finite Deformations, Yooseob Song 2018 Louisiana State University and Agricultural and Mechanical College

A Coupled Thermo-Mechanical Theory Of Strain Gradient Plasticity For Small And Finite Deformations, Yooseob Song

LSU Doctoral Dissertations

In this work, a thermodynamically consistent coupled thermo-mechanical gradient enhanced continuum plasticity theory is developed for small and finite deformations. The proposed model is conceptually based on the dislocations interaction mechanisms and thermal activation energy. The thermodynamic conjugate microstresses are decomposed into energetic and dissipative components. This work incorporates the thermal and mechanical responses of microsystems. It addresses phenomena such as size and boundary effects and in particular microscale heat transfer in fast-transient processes. Not only the partial heat dissipation caused by the fast transient time, but also the distribution of temperature caused by the transition from the plastic work ...


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian 2018 The University of Western Ontario

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is ...


High Performance Thermal Insulation: Silica Aerogels In Construction Technology, Matthew Giarrusso 2018 Union College

High Performance Thermal Insulation: Silica Aerogels In Construction Technology, Matthew Giarrusso

Honors Theses

The United States is a world leader in the production and expenditure of energy, accounting for 18% of the total global energy consumption in 2016, 40% of which was used for the heating, cooling, and lighting of commercial and residential buildings. Currently, traditional air-based insulation products are being used in thicker and more numerous layers in an attempt to keep up with contemporary codes and standards. One promising alternative to traditional insulation is silica aerogel. With a remarkably low density and thermal conductivity, silica aerogel could save energy, space, and weight in new and retrofit structures. Silica aerogels are currently ...


Characterization Of A Novel Variable Friction Connection For Semi-Active Cladding System, Yongqiang Gong, Liang Cao, Simon Laflamme, Spencer Quiel, James Ricles, Douglas Taylor 2018 Iowa State University

Characterization Of A Novel Variable Friction Connection For Semi-Active Cladding System, Yongqiang Gong, Liang Cao, Simon Laflamme, Spencer Quiel, James Ricles, Douglas Taylor

Civil, Construction and Environmental Engineering Publications

Cladding systems are conventionally designed to serve architectural purposes and protect occupants from the environment. Some research has been conducted in altering the cladding system in order to provide additional protection against natural and man‐made hazards. The vast majority of these solutions are passive energy dissipators, applicable to the mitigation of single types of hazards. In this paper, we propose a novel semiactive variable friction device that could act as a connector linking a cladding panel to the structural system. Because of its semiactive capabilities, the device, here termed variable friction cladding connection (VFCC), could be utilized to mitigate ...


Study Of Input Space For State Estimation Of High-Rate Dynamics, Jonathan Hong, Simon Laflamme, Jacob Dodson 2018 Iowa State University

Study Of Input Space For State Estimation Of High-Rate Dynamics, Jonathan Hong, Simon Laflamme, Jacob Dodson

Civil, Construction and Environmental Engineering Publications

High‐rate dynamic systems are defined as systems being exposed to highly dynamic environments that comprise high‐rate and high‐amplitude events. Examples of such systems include civil structures exposed to blast, space shuttles prone to debris strikes, and aerial vehicles experiencing in‐flight changes. The high‐rate dynamic characteristics of these systems provides several possibilities for state estimators to improve performance, including a high potential to reduce injuries and save lives. In this paper, opportunities and challenges that are specific to state estimation of high‐rate dynamic systems are presented and discussed. It is argued that a possible path ...


Adaptive Observers For Structural Health Monitoring Of High-Rate, Time-Varying Dynamic Systems, B. S. Joyce, J. Hong, J. C. Dodson, J. C. Wolfson, Simon Laflamme 2018 University of Dayton Research Institute

Adaptive Observers For Structural Health Monitoring Of High-Rate, Time-Varying Dynamic Systems, B. S. Joyce, J. Hong, J. C. Dodson, J. C. Wolfson, Simon Laflamme

Civil, Construction and Environmental Engineering Conference Presentations and Proceedings

Safe and reliable operation of hypersonic aircraft, space structures, advanced weapon systems, and other high-rate dynamic systems depends on advances in state estimators and damage detection algorithms. High-rate dynamic systems have rapidly changing input forces, rate-dependent and time-varying structural parameters, and uncertainties in material and structural properties. While current structural health monitoring (SHM) techniques can assess damage on the order of seconds to minutes, complex high-rate structures require SHM methods that detect, locate, and quantify damage or changes in the structure’s configuration on the microsecond timescale.

This paper discusses the importance of microsecond structural health monitoring (μSHM) and some ...


Investigation Of Broadband Terahertz Generation From Metasurface, Ming Fang, Kaikun Niu, Zhiaxiang Huang, Thomas Koschny, Costas M. Soukoulis 2018 Iowa State University and Ames Laboratory

Investigation Of Broadband Terahertz Generation From Metasurface, Ming Fang, Kaikun Niu, Zhiaxiang Huang, Thomas Koschny, Costas M. Soukoulis

Ames Laboratory Accepted Manuscripts

The nonlinear metamaterials have been shown to provide nonlinear properties with high nonlinear conversion efficiency and in a myriad of light manipulation. Here we study terahertz generation from nonlinear metasurface consisting of single layer nanoscale split-ring resonator array. The terahertz generation due to optical rectification by the second-order nonlinearity of the split-ring resonator is investigated by a time-domain implementation of the hydrodynamic model for electron dynamics in metal. The results show that the nonlinear metasurface enables us to generate broadband terahertz radiation and free from quasi-phase-matching conditions. The proposed scheme provides a new concept of broadband THz source and designing ...


Direct Synthesis Of Graphene On Niobium And Niobium Nitride, Robin Ekeya, Otto Zietz 2018 Portland State University

Direct Synthesis Of Graphene On Niobium And Niobium Nitride, Robin Ekeya, Otto Zietz

Undergraduate Research & Mentoring Program

Since its isolation by mechanical exfoliation in 2004, graphene has attracted enormous interest from the scientific community not the least because of its unique physical and electronic properties. Among these, graphene’s ballistic electron transport and proximity induced superconductivity make graphene-superconductor (GS) hybrid structures a scientifically promising area.


Modeling Kidney Transplantation Decisions: Regulatory Oversight, Information Sharing, And Post-Transplant Drug Choice, Zahra Gharibi 2018 Southern Methodist University

Modeling Kidney Transplantation Decisions: Regulatory Oversight, Information Sharing, And Post-Transplant Drug Choice, Zahra Gharibi

Engineering Management, Information, and Systems Research Theses and Dissertations

The United States and many other nations are encountering a disturbing obstacle: A shortage of available organs for patients who are in need of kidney transplantation. This dissertation strives to analyze this trend and present potential solution by focusing on three different aspects, namely regulatory oversight, information sharing, and post-transplant immunosuppressant drug choice. In my first essay, I propose a stochastic model that identifies a socially-optimal kidney transplant choice given the inherent trade-off between the expected wait time (driven by supply and demand) and the quality of received donor kidney.

I modify the model to account for changes made by ...


Preliminary Investigation Of Tensile Strength And Impact Characterization Of Cementitious Composite Incorporating Carbon Nanotubes, Robabeh Jazaei 2018 University of Nevada, Las Vegas

Preliminary Investigation Of Tensile Strength And Impact Characterization Of Cementitious Composite Incorporating Carbon Nanotubes, Robabeh Jazaei

UNLV Theses, Dissertations, Professional Papers, and Capstones

Cement has been largely used in the construction industry, specifically as a matrix for concrete. Recently, a new generation of cement-based composite that greatly increases mechanical properties is replacing conventional concrete. With periodic advances in the field, researchers considered particles with high-aspect ratios such as Carbon Nanotubes (CNTs) to reinforce cement matrices. Although there is not much literature to draw upon in research, some research on improving the tensile strength of cementitious composite incorporating with CNTs does exist. However, there had been no evidence of investigation into impact strength until this study.

Most papers presented examined the effect of multi-walled ...


A Novel Approach To Analyzing Strain Heterogeneity In Polycrystalline Quartz Specimens Deformed At High Pressure And Temperature, Nolan Ambrose Regis 2018 University of Nevada, Las Vegas

A Novel Approach To Analyzing Strain Heterogeneity In Polycrystalline Quartz Specimens Deformed At High Pressure And Temperature, Nolan Ambrose Regis

UNLV Theses, Dissertations, Professional Papers, and Capstones

Rheological studies of rocks and minerals allow researchers to study the grain-scale deformation mechanisms that govern large-scale geologic processes from mountain building to mantle mixing. Deforming rock samples with high pressure and temperature apparatuses similar to the Griggs piston cylinder apparatus allows us to simulate deformation at depth. However, many apparatuses are limited to “cook-and-look” analysis and require modeling techniques to determine the evolution of deformation patterns found in experimental samples. A previous study used two-dimensional finite element models to analyze the development of stress and strain patterns in polycrystalline rocks. The study suggested rhythmic patterns in deformed rocks develop ...


Numerical Study Of Oxidation In Stainless Steel Alloy Ep-823 By Liquid Lead-Bismuth Eutectic, Rajyalakshmi Palaparty 2018 University of Nevada, Las Vegas

Numerical Study Of Oxidation In Stainless Steel Alloy Ep-823 By Liquid Lead-Bismuth Eutectic, Rajyalakshmi Palaparty

UNLV Theses, Dissertations, Professional Papers, and Capstones

The oxidation of stainless steel is influenced by the presence of oxygen in the surrounding medium; the oxygen reacts with the alloy to form an oxide. In certain environments, such as nuclear reactor coolant systems, minimal oxidation of the stainless steel containment functions as a protective shield from corrosive coolants such as liquid lead-bismuth eutectic.

In the current study, this minimal oxidation is evaluated for a system in which corrosion-resistant stainless steel alloy EP-823 is subject to an environment of flowing oxygenated liquid lead-bismuth eutectic at a temperature of 743 K, whereby the thickness of the forming oxide layer is ...


Morphological And Energy Transport Optimization Of Spectrally-Selective Solar Absorber Coatings At Mesoscale, Dale Karas 2018 University of Nevada, Las Vegas

Morphological And Energy Transport Optimization Of Spectrally-Selective Solar Absorber Coatings At Mesoscale, Dale Karas

UNLV Theses, Dissertations, Professional Papers, and Capstones

A special class of cuprous-based inorganic oxide materials, synthesized as nanoparticles via hydrothermal and co-precipitation methods, are portable to spectrally-selective absorber coatings with high solar-thermal energy conversion efficiency. Operating reliably at elevated temperatures when used in tandem with solar concentrators, these materials enable cost-competitive solar energy conversion technology that can be incorporated with thermal energy storage systems, supporting the viability of novel renewable power generation; notably, optimizing absorptive performance while mitigating thermal losses through re-radiated waste heat motivates sustainable energy production particular to desert climates, where water conservation and ecological sensitivity needs are paramount.

This work targets the chemical synthesis ...


Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay 2018 University of Maine

Microwave Acoustic Saw Resonators For Stable High-Temperature Harsh-Environment Static And Dynamic Strain Sensing Applications, Anin K. Maskay

Electronic Theses and Dissertations

High-temperature, harsh-environment static and dynamic strain sensors are needed for industrial process monitoring and control, fault detection, structural health monitoring in power plant environments, steel and refractory material manufacturing, aerospace, and defense applications. Sensor operation in the aforementioned extreme environments require robust devices capable of sustaining the targeted high temperatures, while maintaining a stable sensor response. Current technologies face challenges regarding device or system size, complexity, operational temperature, or stability.

Surface acoustic wave (SAW) sensor technology using high temperature capable piezoelectric substrates and thin film technology has favorable properties such as robustness; miniature size; capability of mass production; reduced installation ...


Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert 2018 University of Nebraska-Lincoln

Critical-Point Model Dielectric Function Analysis Of Wo3 Thin Films Deposited By Atomic Layer Deposition Techniques, Ufuk Kılıç, Derek Sekora, Alyssa Mock, Rafał Korlacki, Elena M. Echeverría, Natale J. Ianno, Eva Schubert, Mathias Schubert

Faculty Publications from the Department of Electrical and Computer Engineering

WO3 thin films were grown by atomic layer deposition and spectroscopic ellipsometry data gathered in the photon energy range of 0.72-8.5 eV and from multiple samples was utilized to determine the frequency dependent complex-valued isotropic dielectric function for WO3. We employ a critical-point model dielectric function analysis and determine a parameterized set of oscillators and compare the observed critical-point contributions with the vertical transition energy distribution found within the band structure of WO3 calculated by density functional theory. We investigate surface roughness with atomic force microscopy and compare to ellipsometric determined effective roughness layer thickness.


Digital Commons powered by bepress