Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,338 Full-Text Articles 2,695 Authors 429,490 Downloads 80 Institutions

All Articles in Mechanics of Materials

Faceted Search

1,338 full-text articles. Page 48 of 57.

Hydrogen Generation From Ammonia Borane And Water Through The Combustion Reactions With Mechanically Alloyed Al/Mg Powder, Daniel Rodriguez 2014 University of Texas at El Paso

Hydrogen Generation From Ammonia Borane And Water Through The Combustion Reactions With Mechanically Alloyed Al/Mg Powder, Daniel Rodriguez

Open Access Theses & Dissertations

Finding and developing a safe and effective method for hydrogen storage is integral to its use as an alternative source of energy. The goal of the studies described in this Thesis was to investigate the feasibility of developing combustible hydrogen-generating compositions based on ammonia borane and novel energetic materials such as nanocomposite and mechanically alloyed reactive materials, recently obtained by Prof. Edward Dreizin's team at the New Jersey Institute of Technology (NJIT). Such compositions could be stored for long time and release hydrogen on demand, upon ignition. The first phase of the research included thermodynamic calculations for combustion of ammonia …


An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood 2014 University of Vermont

An Atomic Force Microscopy Nanoindentation Study Of Size Effects In Face-Centered Cubic Metal And Bimetallic Nanowires, Erin Leigh Wood

Graduate College Dissertations and Theses

The enhancement of strength of nanoscale materials such as face-centered cubic metal nanowires is well known and arises largely from processes mediated by high energy surface atoms. This leads to strong size effects in nanoscale plasticity; ,smaller is stronger. Yet, other factors, such as crystalline defects also contribute greatly to the mechanical properties. In particular, twin boundaries, which are pervasive and energetically favorable defects in face-centered cubic metal nanowires, have been shown to greatly enhance the strength, furthermore this increase in strength has been shown to be directly influenced by the twin density. However, attempts to control the …


Morphological Instability Leading To Formation Of Porous Anodic Oxides, Ömer Çapraz, Kurt Hebert, Pranav Shrotriya 2013 Iowa State University

Morphological Instability Leading To Formation Of Porous Anodic Oxides, Ömer Çapraz, Kurt Hebert, Pranav Shrotriya

Ömer Özgür Çapraz

No abstract provided.


Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason Gerald Vogeler 2013 University of Nebraska-Lincoln

Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason Gerald Vogeler

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Polycarbonate (PC) is a tough, transparent engineering thermoplastic. Its impact strength and ability undergo large plastic deformations without shatter make PC an ideal protective material for impact-resilient eyewear, aircraft windows and transparent armor. A good understanding of the response of this material to large deformations at high strain rates is critical for its utilization in these applications. To this end, a striker-less Kolsky bar device is employed in this work for the needed material characterization. The apparatus allow impulsive torsion and/or compression loadings with pulse durations sufficiently long for the plastic flow behavior to develop fully. Three new testing techniques …


Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith 2013 California Polytechnic State University, San Luis Obispo

Mode I Fracture Toughness Of Eight-Harness-Satin Carbon Cloth Weaves For Co-Cured And Post-Bonded Laminates, Josh E. Smith

Master's Theses

Mode I interlaminar fracture of 3k 8-Harness-Satin Carbon cloth, with identical fill and weft yarns, pre-impregnated with Newport 307 resin was investigated through the DCB test (ASTM D5528). Crack propagations along both the fill and weft yarns were considered for both post-bonded (co-bonded) and co-cured laminates. A patent-pending delamination insertion method was compared to the standard Teflon film option to assess its applicability to mode I fracture testing. The Modified Beam Theory, Compliance Calibration method, and Modified Compliance Calibration method were used for comparative purposes for these investigations and to evaluate the validity of the proposed Equivalent Stiffness (EQS) method. …


An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand 2013 University of Tennessee - Knoxville

An Automated Finite Element Analysis Framework For The Probabilistic Evaluation Of Composite Lamina Properties, Jonathan Phillips Weigand

Masters Theses

This thesis outlines the development of computational modeling tools used to predict the elastic properties of composite lamina from representative volume elements (RVE) using numerical methods. The homogenization approach involves the use of Gauss’s Theorem to simply the average volumetric strain integral into a surface integral containing which is defined by surface displacements and their direction. Simulations of RVEs under specific loading conditions (longitudinal tension or shear and transverse tension or shear) are then performed in the software package ABAQUS to obtain the surface displacements. It was found that obtaining quality meshes and applying periodic boundary conditions for each RVE …


Impact Damage On A Thin Glass Plate With A Thin Polycarbonate Backing, Wenke Hu, Yenan Wang, Jian Yu, Chian-Fong Yen, Florin Bobaru 2013 University of Nebraska-Lincoln

Impact Damage On A Thin Glass Plate With A Thin Polycarbonate Backing, Wenke Hu, Yenan Wang, Jian Yu, Chian-Fong Yen, Florin Bobaru

Florin Bobaru Ph.D.

We present experimental and computational results for the impact of a spherical projectile on a thin glass plate with a thin polycarbonate backing plate, restrained in a metal frame, or in the absence of the frame. We analyze the dependence of the damage patterns in the glass plate on the increasing impact velocities, from 61 m/s to 200 m/s. Experimental results are compared with those from peridynamic simulations of a simplified model. The main fracture patterns observed experimentally are captured by the peridynamic model for each of the three projectile velocities tested. More accurate implementation of the actual boundary conditions …


Ergonomichandle And Articulating Laparoscopictool, M. Susan Hallbeck, Dmitry Oleynikov, Kathryn Done, Tim Judkins, Allison DiMartino, Jonathan Morse, Lawton N. Verner 2013 Lincoln, NE

Ergonomichandle And Articulating Laparoscopictool, M. Susan Hallbeck, Dmitry Oleynikov, Kathryn Done, Tim Judkins, Allison Dimartino, Jonathan Morse, Lawton N. Verner

Department of Mechanical and Materials Engineering: Faculty Publications

The present invention relates to a laparoscopic apparatus. The apparatus includes a handle having a body portion, a top surface, opposite bottom surface, a proximal and distal end. The top surface of the base is contoured to compliment the natural curve of the palm. The apparatus further includes a shaft projecting from the distal end of the handle. The shaft has a proximal and distal end. A control sphere is located on the handle. The control sphere can be moved by one or more of a user's fingers to indicate direction. An end effector is located at the distal end …


Synthesis Of Carbon Nanotubes Using High Voltage And High Frequency Induction Field, Kalty Vazquez 2013 FIU

Synthesis Of Carbon Nanotubes Using High Voltage And High Frequency Induction Field, Kalty Vazquez

FIU Electronic Theses and Dissertations

The fields of nanomaterial and nanostructures are some of the fastest growing fields in material science today. Carbon nanotubes are at the forefront of these fields and their unique mechanical and electrical properties are of great interest to those working in multiple engineering fields.

The overall objective of this study was to design and develop a new process and the equipment necessary, to synthesize carbon nanotubes using high voltage and a high-frequency induction field. This was the first time that a high voltage and an induction field have been used simultaneously in high yield production of carbon nanotubes.

The source …


Scalar Differential Equation For Slowly-Varying Thickness-Shear Modes In At-Cut Quartz Resonators With Surface Impedance For Acoustic Wave Sensor Application, Huijing He, Jiashi Yang, John A. Kosinski 2013 University of Nebraska-Lincoln

Scalar Differential Equation For Slowly-Varying Thickness-Shear Modes In At-Cut Quartz Resonators With Surface Impedance For Acoustic Wave Sensor Application, Huijing He, Jiashi Yang, John A. Kosinski

Department of Mechanical and Materials Engineering: Faculty Publications

For time-harmonic motions, we generalize a 2-D scalar differential equation derived previously by Tiersten for slowly-varying thickness-shear vibrations of AT-cut quartz resonators. The purpose of the generalization is to include the effects of surface acoustic impedance from, e.g., mass layers or fluids for sensor applications. In addition to the variation of fields along the plate thickness, which is considered in the usual 1-D acoustic wave sensor models, the equation obtained also describes in-plane variations of the fields, and therefore can be used to study the vibrations of finite plate sensors with edge effects. The equation is compared with the theory …


Compression Testing And Failure Modes Of Steel-Concrete Composite (Sc) Structures For Nuclear Containment, Patrick Michael Wanamaker, Amit H. Varma 2013 Purdue University

Compression Testing And Failure Modes Of Steel-Concrete Composite (Sc) Structures For Nuclear Containment, Patrick Michael Wanamaker, Amit H. Varma

The Summer Undergraduate Research Fellowship (SURF) Symposium

Although being able to provide much cleaner power than burning coal and other fossil fuels, nuclear power plants are still a tough sell to the general public due to their history of being spontaneously dangerous. The containment structures surrounding these nuclear plants, however, can play a huge role in reducing the risks associated with them. Relatively new designs for these containment assemblies, known as SC (steel-concrete composite) structures, aim to increase the strength and durability of the containment facilities while keeping costs down. By varying the spacing between shear studs, the ratio of concrete to steel, and the ratio of …


Code Optimization For Phase Field Method, Sergio Andres Monsalve, Marisol Koslowski 2013 EAFIT University

Code Optimization For Phase Field Method, Sergio Andres Monsalve, Marisol Koslowski

The Summer Undergraduate Research Fellowship (SURF) Symposium

The Phase field model method for studying grain dislocation at atomic level after applying an external force to the materials being tested, enables simulate the behavior of different materials after applying stress. With the appropriate numerical method the simulation could change drastically the complexity of the algorithm. Finding the most accurate and stable numerical method for the phase field model give us a considerable improving in the performance of the code used to simulate the phase field dynamic dislocation in larger and more complex simulations can be performed. We made an statistic comparison between the different methods, comparing stability and …


Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav 2013 Purdue University

Design And Assembly Of Nanostructured Complex Metal Oxide Materials For The Construction Of Batteries And Thermoelectric Devices, Gautam Ganapati Yadav

Open Access Dissertations

Thermoelectric devices and lithium-ion batteries are among the fastest growing energy technologies. Thermoelectric devices generate energy from waste heat, whereas lithium-ion batteries store energy for use in commercial applications. Two different topics are bound with a common thread in this thesis - nanotechnology! In fact, nanostructuring is a more preferred term for the approach I have taken herein. Another commonality between these two topics is the material system I have used to prove my hypotheses - complex metal oxides.

Complex metal oxides can be used for both energy generation and storage as they are stable at high temperatures, are benign …


Fabricating Complex-Shaped Components By Room-Temperature Injection Molding Of Aqueous Ceramic Suspension Gels, Valerie Lynn Wiesner 2013 Purdue University

Fabricating Complex-Shaped Components By Room-Temperature Injection Molding Of Aqueous Ceramic Suspension Gels, Valerie Lynn Wiesner

Open Access Dissertations

Water-based ceramic suspension gels (CeraSGels) effectively produced dense, near-net shape ceramic parts by room-temperature injection molding, a novel processing method based on traditional ceramic injection molding. This alternative method eliminated the need for heating and cooling feedstocks to process, as is required in conventional injection molding, through control of the rheological response of the CeraSGels by simply varying polymer content without the use of any harsh crosslinking or curing agents or further chemical processes. The development of room-temperature injection molding initially focused on forming CeraSGels based on alumina, a readily available model material, in order to optimize suspension preparation and …


Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang 2013 Purdue University

Preparation Of Mesoporous Silica Supported Ruthenium Oxides And The Application And Kinetic Study In The Catalysis Of Water Oxidation, Yang Zhang

Open Access Dissertations

Photo-induced water splitting of water into H2 and O2 has been a major focus in the development of clean and renewable energy. The development of viable and efficient catalysts that facilitates O2 production remains the major challenge in the study of the corresponding half-reaction of water oxidation. There are plenty of metal oxides reported active in the catalysis of water oxidation. However, several important performance bench marks of those materials, such as the non-stoichiometric production of O2, slow reaction rate and/or low quantum efficiency, remain to be improved.

Ruthenium oxide (RuO2) has long been known as one of the most …


A New Angle On Microscopic Suspension Feeders Near Boundaries, Rachel E. Pepper, Marcus Roper, Sangjin Ryu, Nobuyoshi Matsumoto, Moeto Nagai, Howard A. Stone 2013 University of California - Berkeley

A New Angle On Microscopic Suspension Feeders Near Boundaries, Rachel E. Pepper, Marcus Roper, Sangjin Ryu, Nobuyoshi Matsumoto, Moeto Nagai, Howard A. Stone

Department of Mechanical and Materials Engineering: Faculty Publications

Microscopic sessile suspension feeders are a critical component in aquatic ecosystems, acting as an intermediate trophic stage between bacteria and higher eukaryotic taxa. Because they live attached to boundaries, it has long been thought that recirculation of the feeding currents produced by sessile suspension feeders inhibits their ability to access fresh fluid. However, previous models for the feeding flows of these organisms assume that they feed by pushing fluid perpendicular to surfaces they live upon, whereas we observe that sessile suspension feeders often feed at an angle to these boundaries. Using experiments and calculations, we show that living suspension feeders …


Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan 2013 Argonne National Laboratory

Metal-Assisted Etching Of Silicon Molds For Electroforming, Ralu Divan, Dan Rosenthal '14, Karim Ogando, Leonidas E. Ocola, Daniel Rosenmann, Nicolaie Moldovan

Student Publications & Research

Ordered arrays of high-aspect-ratio micro/nanostructures in semiconductors stirred a huge scientific interest due to their unique one-dimensional physical morphology and the associated electrical, mechanical, chemical, optoelectronic, and thermal properties. Metal-assisted chemical etching enables fabrication of such high aspect ratio Si nanostructures with controlled diameter, shape, length, and packing density, but suffers from structure deformation and shape inconsistency due to uncontrolled migration of noble metal structures during etching. Hereby the authors prove that a Ti adhesion layer helps in stabilizing gold structures, preventing their migration on the wafer surface while not impeding the etching. Based on this finding, the authors demonstrate …


Collaborative Research: Mechanics Of Growing Bodies: A Riemannian Geometric Approach, Alireza Shamsaei Sarvestani 2013 Principal Investigator; University of Maine, Orono

Collaborative Research: Mechanics Of Growing Bodies: A Riemannian Geometric Approach, Alireza Shamsaei Sarvestani

University of Maine Office of Research Administration: Grant Reports

The research objective of this grant is to elucidate a differential/Riemannian geometric formulation for the mechanics of growing bodies. The proposed work is based on the concept of a changing material manifold whose dynamics predicts the evolution of the relaxed state of a material body. This theory is applicable to biological tissues in which growth and remodeling are coupled with large deformations. To achieve the research objective of this proposal, a theory of continuum mechanics based on a dynamic material manifold is introduced that couples the growth/remodeling of biological tissues with their large deformations. The proposed research will put growth …


Pan Nanofibers And Nanofiber Reinforced Composites, Cheng Ren 2013 University of Nebraska-Lincoln

Pan Nanofibers And Nanofiber Reinforced Composites, Cheng Ren

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Nanomaterials play an important role in the development of nanotechnology. They possess unique mechanical, physical, and chemical properties coupled with small size and ultrahigh surface area that can provide critical advantages for applications. Continuous nanofibers attract special interest due to their dual nano-macro nature and ability to bridge scales. Nanofibers are being considered for a broad range of applications spanning advanced filters, separation membranes, ultrasensitive sensors, micro/nano actuators, nanoprobes, tissue engineering scaffolds, protective and smart closing, and multifunctional composites. Most of these applications require certain mechanical properties and robustness. However, the literature on the mechanical behavior of nanofibers and their …


Influence Of Microstructure On The Propagation Of Fatigue Cracks In Inconel 617, Benjiman Michael Albiston 2013 Boise State University

Influence Of Microstructure On The Propagation Of Fatigue Cracks In Inconel 617, Benjiman Michael Albiston

Boise State University Theses and Dissertations

Inconel 617 is a candidate material for use in the intermediate heat exchanger of the Next Generation Nuclear Plant. Because of the high temperatures and the fluctuations in stress and temperature, the fatigue behavior of the material is important to understand. The goal of this study was to determine the influences of the microstructure during fatigue crack propagation. For this investigation, Inconel 617 compact tension samples, fatigue tested by Julian Benz at the Idaho National Laboratory, were obtained. The testing conditions included two environments at 650 °C (lab air and impure-He) and varied testing parameters including: loading waveform (triangular, trapezoidal), …


Digital Commons powered by bepress