Open Access. Powered by Scholars. Published by Universities.®

Mechanics of Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

1,668 Full-Text Articles 2,801 Authors 333,896 Downloads 64 Institutions

All Articles in Mechanics of Materials

Faceted Search

1,668 full-text articles. Page 2 of 53.

Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel 2020 Virginia Commonwealth University

Generation Of Warm Dense Plasma On Solar Panel Infrastructure In Exo-Atmospheric Conditions, Harrison C. Wenzel

Theses and Dissertations

The use of a weaponized thermo-nuclear device in exo-atmospheric conditions would be of great impact on the material integrity of orbiting satellite infrastructure. Particular damage would occur to the multi-layered, solar cell components of such satellites. The rapid absorption of X-ray radiation originating from a nuclear blast into these layers occurs over a picosecond time scale and leads to the generation of Warm Dense Plasma (WDP). While incredibly difficult and costly to replicate in a laboratory setting, a collection of computational techniques and software libraries may be utilized to simulate the intricate atomic and subatomic physics characteristics of such an ...


Investigation Of Longitudinal Cracking In Widened Concrete Pavements, Shuo Yang, Yang Zhang, Orhan Kaya, Halil Ceylan, Sunghwan Kim 2020 Iowa State University

Investigation Of Longitudinal Cracking In Widened Concrete Pavements, Shuo Yang, Yang Zhang, Orhan Kaya, Halil Ceylan, Sunghwan Kim

Civil, Construction and Environmental Engineering Publications

Widened slabs, widely employed in many US states in concrete pavements, have suffered from unexpected longitudinal cracks. These cracks suddenly appeared within 0.60 m to 1.20 m from widened slab edges and could be detrimental to the long-term pavement performance. The primary objective of this study was to identify possible causes for such longitudinal cracking observed on widened concrete pavements. Both field investigation and Finite Element Analysis were performed. Degrees of curling and warping were measured using a Terrestrial Laser Scanner. Concrete cores were also extracted to achieve a better understanding of how the cracking had developed. Field ...


Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner 2019 Pennsylvania State University

Generalized Ultrasonic Scattering Model For Arbitrary Transducer Configurations, Andrea P. Arguelles, Joseph A. Turner

Mechanical & Materials Engineering Faculty Publications

Ultrasonic scattering in polycrystalline media is directly tied to microstructural features. As a result, modeling efforts of scattering from microstructure have been abundant. The inclusion of beam modeling for the ultrasonic transducers greatly simplified the ability to perform quantitative, fully calibrated experiments. In this article, a theoretical scattering model is generalized to allow for arbitrary source and receiver configurations, while accounting for beam behavior through the total propagation path. This extension elucidates the importance and potential of out-of-plane scattering modes in the context of microstructure characterization. The scattering coefficient is explicitly written for the case of statistical isotropy and ellipsoidal ...


Highly Reactive Energetic Films By Pre-Stressing Nano-Aluminum Particles, Michael N. Bello, Alan M. Williams, Valery I. Levitas, Nobumichi Tamura, Daniel K. Unruh, Juliusz Warzywoda, Michelle L. Pantoya 2019 Texas Tech University

Highly Reactive Energetic Films By Pre-Stressing Nano-Aluminum Particles, Michael N. Bello, Alan M. Williams, Valery I. Levitas, Nobumichi Tamura, Daniel K. Unruh, Juliusz Warzywoda, Michelle L. Pantoya

Aerospace Engineering Publications

Energetic films were synthesized using stress altered nano-aluminum particles (nAl). The nAl powder was pre-stressed to examine how modified mechanical properties of the fuel particles influenced film reactivity. Pre-stressing conditions varied by quenching rate. Slow and rapid quenching rates induced elevated dilatational strain within the nAl particles that was measured using synchrotron X-ray diffraction (XRD). An analytical model for stress and strain in a nAl core–Al2O3 shell particle that includes creep in the shell and delamination at the core–shell boundary, was developed and used for interpretation of strain measurements. Results show rapid quenching induced 81% delamination at the ...


Effect Of Annealing On The Contact Resistance Of Aluminum On A P-Type Substrate, Shrey Shah, George Patrick Watson 2019 Singh Center for Nanotechnology

Effect Of Annealing On The Contact Resistance Of Aluminum On A P-Type Substrate, Shrey Shah, George Patrick Watson

Protocols and Reports

Aluminum contacts are widely used to form both ohmic and rectifying contacts. The process to form these contacts involves annealing, thus it is important to study the effect of annealing on the electrical properties of the contacts. Here, we present a way to measure the contact resistance of aluminum contacts formed on a p-type silicon substrate. It was found the contact resistivity decreased by an average of 18%. It was thus found that annealing at 400°C in a forming gas environment improves the electrical properties of aluminum contacts.


Development Of Engineered Cementitious Composites With Conductive Inclusions For Use In Self-Sensing Applications, Benny Suryanto Dr, Danah Saraireh Ms, Steven Walls Mr, Jaehwan Kim Dr, W John McCarter Prof 2019 Heriot-Watt University

Development Of Engineered Cementitious Composites With Conductive Inclusions For Use In Self-Sensing Applications, Benny Suryanto Dr, Danah Saraireh Ms, Steven Walls Mr, Jaehwan Kim Dr, W John Mccarter Prof

International Conference on Durability of Concrete Structures

The mechanical and a.c. electrical properties of a new varietal of engineered cementitious composite (ECC) incorporating conductive inclusions are presented. Electrical measurements were undertaken over a wide frequency range while curing and when under uniaxial tensile loading to study the influence of ongoing hydration and multiple microcrack formation on the composite electrical impedance. When presented in Nyquist format, the work shows that conductive inclusions reduce the bulk resistance of the composite while enhancing its polarizability, transforming the classic, single-arc bulk response of typical cement-based materials to a two-arc response. The bulk resistance was shown to increase with time and ...


Experimental And Numerical Investigation On The Irregularity Of Carbonation Depth Of Concrete Under Supercritical Condition, Hao Bao Masc, Min Yu Dr., Jianqiao Ye Dr., Lihua Xu Dr., Yin Chi Dr., J Ye 2019 Wuhan University

Experimental And Numerical Investigation On The Irregularity Of Carbonation Depth Of Concrete Under Supercritical Condition, Hao Bao Masc, Min Yu Dr., Jianqiao Ye Dr., Lihua Xu Dr., Yin Chi Dr., J Ye

International Conference on Durability of Concrete Structures

The heterogeneity of a cement-based material results in a random spatial distribution of carbonation depth, which may significantly affect the mechanical properties and durability of the material. Currently, there is a lack of both experimental and numerical investigations aiming at a statistical understanding of this important phenomenon. This paper presents both experimental and numerical supercritical carbonation test results of concrete blocks. The random fields of porosity and two-dimension random aggregate model of concrete were proposed for the simulation. The carbonation depths are measured and distributed along the carbonation boundary by the proposed rapid image processing technique, which are then statistically ...


Beyond The Toolpath: Site-Specific Melt Pool Size Control Enables Printing Of Extra-Toolpath Geometry In Laserwire-Based Directed Energy Deposition, Brian T. Gibson, Bradley S. Richardson, Tayler W. Undermann, Lonnie J. Love 2019 Oak Ridge National Laboratory

Beyond The Toolpath: Site-Specific Melt Pool Size Control Enables Printing Of Extra-Toolpath Geometry In Laserwire-Based Directed Energy Deposition, Brian T. Gibson, Bradley S. Richardson, Tayler W. Undermann, Lonnie J. Love

Mechanical & Materials Engineering Faculty Publications

A variety of techniques have been utilized in metal additive manufacturing (AM) for melt pool size management, including modeling and feed-forward approaches. In a few cases, closed-loop control has been demonstrated. In this research, closed-loop melt pool size control for large-scale, laser wire-based directed energy deposition is demonstrated with a novel modification, i.e., site-specific changes to the controller setpoint were commanded at trigger points, the locations of which were generated by the projection of a secondary geometry onto the primary three-dimensional (3D) printed component geometry. The present work shows that, through this technique, it is possible to print a ...


Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim 2019 Singh Center for Nanotechnology

Influence Of Flow Rate, Nozzle Speed, Pitch And The Number Of Passes On The Thickness Of S1805 Photoresist In Suss Microtec As8 Spray Coater, Rohan Sanghvi, Gyuseok Kim

Tool Data

S1805 positive photoresist has been deposited on single crystalline Si wafers using a Suss MicroTec Alta Spray. The influence of flow rate, nozzle speed, pitch and number of passes on the thickness of the photoresist was studied. Results show that the thickness of S1805 is linearly proportional to the flow rate and number of passes, and inversely proportional to the nozzle speed and pitch.


Effect Of Silica Fume In Concrete On Mechanical Properties And Dynamic Behaviors Under Impact Loading, Shijun Zhao, Qing Zhang 2019 Hohai University & University of Nebraska-Lincoln

Effect Of Silica Fume In Concrete On Mechanical Properties And Dynamic Behaviors Under Impact Loading, Shijun Zhao, Qing Zhang

Mechanical & Materials Engineering Faculty Publications

The effect of silica fume (SF) in concrete on mechanical properties and dynamic behaviors was experimentally studied by split Hopkinson pressure bar (SHPB) device with pulse shaping technique. Three series of concrete with 0, 12%, and 16% SF as a cement replacement by weight were produced firstly. Then the experimental procedure for dynamic tests of concrete specimens with SF under a high loading rate was presented. Considering the mechanical performance and behaviors of the concrete mixtures, those tests were conducted under five different impact velocities. The experimental results clearly show concrete with different levels of SF is a strain-rate sensitive ...


Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson 2019 Singh Center for Nanotechnology

Correction Of Pattern Size Deviations In The Fabrication Of Photomasks Made With A Laser Direct-Writer, Ningzhi Xie, George Patrick Watson

Protocols and Reports

When using Heidelberg DWL66+ laser writer to fabricate the photomask, the pattern feature dimensions may have deviations. These deviations can be caused by the lithography process and the undercut in the metal etch process. The same deviation value of 0.8µm was found to appear in all the patterns independent of the pattern original size and local pattern density. To overcome this universal deviation, a universal bias is suggested to be applied to the original patterns during the data preparation for the lithography process. In order to ensure this pre-exposure bias method can work, both the laser direct-write exposure conditions ...


System And Method For Sensing Wind Flow Passing Over Complex Terrain, Saleh Nabi, Piyush Grover, Mithu Debnath 2019 University of Nebraska - Lincoln

System And Method For Sensing Wind Flow Passing Over Complex Terrain, Saleh Nabi, Piyush Grover, Mithu Debnath

Mechanical & Materials Engineering Faculty Publications

A wind flow sensing system determines a first approximation of the velocity field at each of the altitudes by simulating computational fluid dynamics ( CFD ) of the wind flow with operating parameters reducing a cost function of a weighted combination of errors , determines a horizontal derivative of vertical velocity at each of the altitudes from the first approximation of the velocity fields , and determines a second approximation of the velocity fields using geometric relationships between a velocity field for each of the altitudes , projections of the measurements of radial velocities on the three - dimensional axes , and the horizontal derivative of vertical ...


Multi-Agent Control System And Method, Piyush Grover, Karthik Elamvazhuthi 2019 University of Nebraska - Lincoln

Multi-Agent Control System And Method, Piyush Grover, Karthik Elamvazhuthi

Mechanical & Materials Engineering Faculty Publications

Motion of multiple agents with identical non - linear dynamics is controlled to change density of the agents from the initial to the final density . A first control problem is formulated for optimizing a control cost of changing density of the agents from the initial density to the final density subject to dynamics of the agents in a density space . The first control problem , which is a non - linear non - convex problem over a multi - agent control and a density of the agents , is trans formed into a second control problem over the density of the agents and a product of ...


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan 2019 Xi'an Polytechnic University & University of Nebraska Medical Center & Donghua University

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Mechanical & Materials Engineering Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment ...


3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan 2019 Xi'an Polytechnic University & University of Nebraska Medical Center & Donghua University

3d Printing Of Silk Fibroin-Based Hybrid Scaffold Treated With Platelet Rich Plasma For Bone Tissue Engineering, Liang Wei, Shaohua Wu, Mitchell Kuss, Xiping Jiang, Runjun Sun, Reid Patrick, Xiaohong Qin, Bin Duan

Mechanical & Materials Engineering Faculty Publications

3D printing/bioprinting are promising techniques to fabricate scaffolds with well controlled and patient-specific structures and architectures for bone tissue engineering. In this study, we developed a composite bioink consisting of silk fibroin (SF), gelatin (GEL), hyaluronic acid (HA), and tricalcium phosphate (TCP) and 3D bioprinted the silk fibroin-based hybrid scaffolds. The 3D bioprinted scaffolds with dual crosslinking were further treated with human platelet-rich plasma (PRP) to generate PRP coated scaffolds. Live/Dead and MTT assays demonstrated that PRP treatment could obviously promote the cell growth and proliferation of human adipose derived mesenchymal stem cells (HADMSC). In addition, the treatment ...


Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma 2019 Chinese Academy of Sciences & University of Science and Technology of China

Interface Effects On He Ion Irradiation In Nanostructured Materials, Wenfan Yang, Jingyu Pang, Shijian Zheng, Jian Wang, Xinghang Zhang, Xiuliang Ma

Mechanical & Materials Engineering Faculty Publications

In advanced fission and fusion reactors, structural materials suffer from high dose irradiation by energetic particles and are subject to severe microstructure damage. He atoms, as a byproduct of the (n) transmutation reaction, could accumulate to form deleterious cavities, which accelerate radiation-induced embrittlement, swelling and surface deterioration, ultimately degrade the service lifetime of reactor materials. Extensive studies have been performed to explore the strategies that can mitigate He ion irradiation damage. Recently, nanostructured materials have received broad attention because they contain abundant interfaces that are efficient sinks for radiation-induced defects. In this review, we summarize and analyze the current understandings ...


The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim 2019 University of Nebraska-Lincoln

The Linc Complex, Mechanotransduction, And Mesenchymal Stem Cell Function And Fate, Tasneem Bouzid, Eunju Kim, Brandon D. Riehl, Amir Monemian Esfahani, Jordan Rosebohm, Ruiguo Yang, Bin Duan, Jung Yul Lim

Mechanical & Materials Engineering Faculty Publications

Mesenchymal stem cells (MSCs) show tremendous promise as a cell source for tissue engineering and regenerative medicine, and are understood to be mechanosensitive to external mechanical environments. In recent years, increasing evidence points to nuclear envelope proteins as a key player in sensing and relaying mechanical signals in MSCs to modulate cellular form, function, and differentiation. Of particular interest is the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex that includes nesprin and SUN. In this review, the way in which cells can sense external mechanical environments through an intact nuclear envelope and LINC complex proteins will be briefly described. Then ...


General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr 2019 University of New Orleans

General Nonlinear-Material Elasticity In Classical One-Dimensional Solid Mechanics, Ronald Joseph Giardina Jr

University of New Orleans Theses and Dissertations

We will create a class of generalized ellipses and explore their ability to define a distance on a space and generate continuous, periodic functions. Connections between these continuous, periodic functions and the generalizations of trigonometric functions known in the literature shall be established along with connections between these generalized ellipses and some spectrahedral projections onto the plane, more specifically the well-known multifocal ellipses. The superellipse, or Lam\'{e} curve, will be a special case of the generalized ellipse. Applications of these generalized ellipses shall be explored with regards to some one-dimensional systems of classical mechanics. We will adopt the Ramberg-Osgood ...


On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang 2019 University of Nebraska-Lincoln

On The Measurement Of Energy Dissipation Of Adhered Cells With The Quartz Microbalance With Dissipation Monitoring, Amir Monemian Esfahani, Weiwei Zhao, Jennifer Y. Chen, Changjin Huang, Ning Xi, Jun Xi, Ruiguo Yang

Mechanical & Materials Engineering Faculty Publications

We previously reported the finding of a linear correlation between the change of energy dissipation (ΔD) of adhered cells measured with the quartz crystal microbalance with dissipation monitoring (QCM-D) and the level of focal adhesions of the cells. To account for this correlation, we have developed a theoretical framework for assessing the ΔD-response of adhered cells. We rationalized that the mechanical energy of an oscillating QCM-D sensor coupled with a cell monolayer is dissipated through three main processes: the interfacial friction through the dynamic restructuring (formation and rupture) of cell-extracellular matrix (ECM) bonds, the interfacial viscous damping by the liquid ...


Optical Direct Detection Of Thermal Vibrations Of Ultralow Stiffness Micro-Nano Structures., Sri Sukanta Chowdhury 2019 University of Louisville

Optical Direct Detection Of Thermal Vibrations Of Ultralow Stiffness Micro-Nano Structures., Sri Sukanta Chowdhury

Electronic Theses and Dissertations

A direct detection optical vibrometer is constructed around an 850 nm laser and a quadrant photodetector (QPD). The limit of detection is 0.2 fW which corresponds to a minimum amplitude of 0.1 Å. The vibrometer is used to measure the thermal vibration spectra of low stiffness micromechanical structures have nanometer features. One structure measured is a cantilevered 30 μm diameter glass fiber. Vibration amplitudes as low as 1.1 Å are measured. The thermal vibration spectra show fundamental resonances at 80-250 Hz and a signal to noise ratio (SNR) of 23-55 dB. Young’s modulus of glass in ...


Digital Commons powered by bepress