Open Access. Powered by Scholars. Published by Universities.®

Systems and Communications Commons

Open Access. Powered by Scholars. Published by Universities.®

1138 Full-Text Articles 1397 Authors 650867 Downloads 63 Institutions

All Articles in Systems and Communications

Faceted Search

1138 full-text articles. Page 6 of 44.

Efficient And Virtualized Scheduling For Ofdm-Based High Mobility Wireless Communications Objects, Mohamed Hussein Abdelwahab Ahmed 2016 The University of Western Ontario

Efficient And Virtualized Scheduling For Ofdm-Based High Mobility Wireless Communications Objects, Mohamed Hussein Abdelwahab Ahmed

Electronic Thesis and Dissertation Repository

Services providers (SPs) in the radio platform technology standard long term evolution (LTE) systems are enduring many challenges in order to accommodate the rapid expansion of mobile data usage. The modern technologies demonstrate new challenges to SPs, for example, reducing the cost of the capital and operating expenditures while supporting high data throughput per customer, extending battery life-per-charge of the cell phone devices, and supporting high mobility communications with fast and seamless handover (HO) networking architecture. In this thesis, a variety of optimized techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into three ...


Spectral And Performance Analysis For The Propagation And Retrieval Of Signals From Modulated Chaos Waves Transmitted Through Modified Von Karman Turbulence, Fathi H.A. Mohamed, Monish Ranjan Chatterjee 2016 University of Dayton

Spectral And Performance Analysis For The Propagation And Retrieval Of Signals From Modulated Chaos Waves Transmitted Through Modified Von Karman Turbulence, Fathi H.A. Mohamed, Monish Ranjan Chatterjee

Monish R. Chatterjee

A transfer function formalism is applied to track propagation of modulated chaos waves through modified von Karman phase turbulence; the demodulated signal is examined vis-à-vis performance relative to turbulence strength in comparison with non-chaotic propagation.


Revisiting The Fresnel Coefficients For Uniform Plane Wave Propagation Across A Nonchiral, Reciprocal And Chiral, Nonreciprocal Interface, Monish Ranjan Chatterjee, Sumit Nema 2016 University of Dayton

Revisiting The Fresnel Coefficients For Uniform Plane Wave Propagation Across A Nonchiral, Reciprocal And Chiral, Nonreciprocal Interface, Monish Ranjan Chatterjee, Sumit Nema

Monish R. Chatterjee

The problem of EM wave propagation in non-reciprocal chiral media has been studied by several investigators. In a recent approach, a dual-transform technique has been developed to study the problem of such propagation under paraxial and slow-envelope variation conditions.

In this paper, we first outline some of the results obtained using the dual transform technique for arbitrary boundary conditions within the left boundary of a semi-infinite, non-reciprocal chiral medium for a uniform plane wave, and a fundamental Gaussian-profiled beam. Next, we explore the problem of a uniform EM wave incident at an oblique angle at an interface between a reciprocal ...


Realization Of Negative Index In Second-Order Dispersive Metamaterials Using Standard Dispersion Models For Electromagnetic Parameters, Tarig A. Algadey, Monish Ranjan Chatterjee 2016 University of Dayton

Realization Of Negative Index In Second-Order Dispersive Metamaterials Using Standard Dispersion Models For Electromagnetic Parameters, Tarig A. Algadey, Monish Ranjan Chatterjee

Monish R. Chatterjee

In recent work, electromagnetic propagation velocities for plane waves in dispersive metamaterials were calculated assuming frequency dispersion up to the second order. The three velocities were expressed in terms of dispersive coefficients under certain simplifying constraints. Frequency domains were found to exist around resonances where group and phase velocities are in opposition, implying possible negative index behavior.

In this paper, we incorporate in the derived equations physical models (including Debye, Lorentz and Condon) for material dispersion in permittivity, permeability and chirality in order to further examine the consequences of second-order dispersion leading to negative index for practical cases, and also ...


Overview Of Acousto-Optic Bistability, Chaos, And Logical Applications, Monish Ranjan Chatterjee, Erol Sonmez 2016 University of Dayton

Overview Of Acousto-Optic Bistability, Chaos, And Logical Applications, Monish Ranjan Chatterjee, Erol Sonmez

Monish R. Chatterjee

An overview is presented of the key results in the field of acousto-optic bistability in the past two decades. It is shown that the basic acousto-optic bistable device may be described as a nonlinear dynamical system which satisfies a quadratic map. Thereafter, details are presented of several analytical methods, computer modeling approaches, including the SPICE circuit modeling technique, and experiments that have been used to understand the phenomenon.

Extensions to logical and digital applications are also discussed.


Examination Of Chaotic Signal Encryption And Recovery For Secure Communication Using Hybrid Acousto-Optic Feedback, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi 2016 University of Dayton

Examination Of Chaotic Signal Encryption And Recovery For Secure Communication Using Hybrid Acousto-Optic Feedback, Monish Ranjan Chatterjee, Mohammed A. Al-Saedi

Monish R. Chatterjee

Generation of chaos from acousto-optic (A-O)Bragg cell modulators with an electronic feedback has been studied for over 3 decades. Since an acousto-optic Bragg cell with zeroth- and first-order feedback exhibits chaotic behavior past the threshold for bistability, such a system was recently examined for possible chaotic encryption of simple messages (such as a low-amplitude sinusoidal signal) applied via the bias input of the sound cell driver. Subsequent recovery of the message signal was carried out via a heterodyne-type strategy employing a locally generated chaotic carrier, with threshold parameters matched to the transmitting Bragg cell.

In this paper, we present ...


Secure Transmission Of Static And Dynamic Images Via Chaotic Encryption In Acousto-Optic Hybrid Feedback With Profiled Light Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi 2016 University of Dayton

Secure Transmission Of Static And Dynamic Images Via Chaotic Encryption In Acousto-Optic Hybrid Feedback With Profiled Light Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi

Monish R. Chatterjee

Secure information encryption via acousto-optic (AO) chaos with profiled optical beams indicates substantially better performance in terms of system robustness. This paper examines encryption of static and time-varying (video) images onto AO chaotic carriers using Gaussian-profile beams with diffracted data numerically generated using transfer functions. The use of profiled beams leads to considerable improvement in the encrypted signal.

While static image encryption exhibits parameter tolerances within about ±10% for uniform optical beams, profiled beams reduce the tolerance to less than 1%, thereby vastly improving both the overall security of the transmitted information as well as the quality of the image ...


Secure Transmission And Retrieval Of Images In Conjunction With Steganography Using Chaos In Nonlinear Acousto-Optic Feedback, Monish Ranjan Chatterjee, Fares S. Almehmadi 2016 University of Dayton

Secure Transmission And Retrieval Of Images In Conjunction With Steganography Using Chaos In Nonlinear Acousto-Optic Feedback, Monish Ranjan Chatterjee, Fares S. Almehmadi

Monish R. Chatterjee

Digital images are encrypted onto a chaotic carrier in a Bragg cell under hybrid nonlinear feedback and secure data is embedded into the system via steganography. System robustness (with and without channel noise) is analyzed vis-a-vis information security.


Numerical Investigation Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With A Variable Feedback Gain, Monish Ranjan Chatterjee, Hao Zhou 2016 University of Dayton

Numerical Investigation Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With A Variable Feedback Gain, Monish Ranjan Chatterjee, Hao Zhou

Monish R. Chatterjee

Since around 1979, the operation of an acousto-optic Bragg cell under positive first-order feedback via amplification and delay in the loop has been studied extensively by several groups [1-3]. In recent work, the analysis of the nonlinear dynamics (NLD) of the system was extended to include bistable maps and Lyapunov exponents, and application of the chaos for signal encryption and decryption for uniform plane waves. The present work originated with the problem of a variable photodetector aperture opening relative to the first-order light. This potentially complex problem is simplified by assuming instead a variable feedback gain ( β ~ (t)), which leads ...


Numerical Examination Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With Positive Feedback Under Profiled Beam Propagation, Fares S. Almehmadi, Monish Ranjan Chatterjee 2016 University of Dayton

Numerical Examination Of The Nonlinear Dynamics Of A Hybrid Acousto-Optic Bragg Cell With Positive Feedback Under Profiled Beam Propagation, Fares S. Almehmadi, Monish Ranjan Chatterjee

Monish R. Chatterjee

In standard weak interaction theory, acousto-optic Bragg analysis typically assumes that the incident light and sound beams are uniform plane waves. Acousto-optic Bragg diffraction with nonuniform profiled input beams is numerically examined under open loop via a transfer function formalism. Unexpected deviations in the first-order diffracted beam from the standard theory are observed for high 𝑄 values. These deviations are significant because the corresponding closed-loop system is sensitive to input amplitudes and initial conditions, and the overall impact on the dynamical behavior has not been studied previously in standard analyses. To explore the effect of such nonuniform output profiles on ...


Numerical Inversion And Assessment Of 2d Laplace Transforms Using The Brancik Algorithm And Its Use In 3d Holography, Monish Ranjan Chatterjee, Le Feng 2016 University of Dayton

Numerical Inversion And Assessment Of 2d Laplace Transforms Using The Brancik Algorithm And Its Use In 3d Holography, Monish Ranjan Chatterjee, Le Feng

Monish R. Chatterjee

An analytic examination of 3D holography under a 90° recording geometry was carried out earlier in which 2D spatial Laplace transforms were introduced in order to develop transfer functions for the scattered outputs under readout [1,2]. Thereby, the resulting reconstructed output was obtained in the 2D Laplace domain whence the spatial information would be found only by performing a 2D Laplace inversion. Laplace inversion in 2D was attempted by testing a prototype function for which the analytic result was known using two known inversion algorithms, viz., the Brancik and the Abate [2]. The results indicated notable differences in the ...


Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi 2016 University of Dayton

Numerical Examination Of Acousto-Optic Bragg Interactions For Profiled Lightwaves Using A Transfer Function Formalism, Monish Ranjan Chatterjee, Fares S. Almehmadi

Monish R. Chatterjee

Classically, acousto-optic (AO) interactions comprise scattering of photons by energetic phonons into higher and lower orders. Standard weak interaction theory describes diffraction in the Bragg regime as the propagation of a uniform plane wave of light through a uniform plane wave of sound, resulting in the well-known first- and zeroth-order diffraction.

Our preliminary investigation of the nature of wave diffraction and photon scattering from a Bragg cell under intensity feedback with profiled light beams indicates that the diffracted (upshifted photon) light continues to maintain the expected (uniform plane wave) behavior versus the optical phase shift in the cell within a ...


Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi 2016 University of Dayton

Nonlinear Dynamics Of Bragg-Domain Acousto-Optic Hybrid Feedback For First-Order Scattering Of Profiled Optical Beams, Monish Ranjan Chatterjee, Fares S. Almehmadi

Monish R. Chatterjee

A series of recent studies involving hybrid acousto-optic (AO) scattering in the Bragg domain under first-order feedback have shown the ability of the AO feedback system to encrypt, transmit and decrypt RF information applied via the sound driver. The basic premise of this operation is founded on the chaotic nature of the hybrid Bragg cell under feedback.


Numerical Analysis Of First-Order Acousto-Optic Bragg Diffraction Of Profiled Optical Beams Using Open-Loop Transfer Functions, Monish Ranjan Chatterjee, Fares S. Almehmadi 2016 University of Dayton

Numerical Analysis Of First-Order Acousto-Optic Bragg Diffraction Of Profiled Optical Beams Using Open-Loop Transfer Functions, Monish Ranjan Chatterjee, Fares S. Almehmadi

Monish R. Chatterjee

In standard acousto-optic Bragg analysis, the incident light and sound beams are assumed to be uniform plane waves (with constant profiles) leading to the results based on standard weak interaction theory. As a follow-up to earlier work dealing with nonuniform incident optical beams, we revisit the problem of Bragg diffraction under nonuniform profiles, and include Gaussian, third-order Hermite–Gaussian, and zeroth-order Bessel profiles in our investigation, along with a few others. The first-order diffracted beam is examined (using a transfer function formalism based on angular spectra) under several parametric limits [such as the Klein–Cook parameter Q, the effective profile ...


Large-Area Object Search And Recovery Using Sector-Based Aerial Acousto-Optic Scanning And Reflection Sensing, Monish Ranjan Chatterjee, Salaheddeen G. Bugoffa 2016 University of Dayton

Large-Area Object Search And Recovery Using Sector-Based Aerial Acousto-Optic Scanning And Reflection Sensing, Monish Ranjan Chatterjee, Salaheddeen G. Bugoffa

Monish R. Chatterjee

A sector-based angular scanning system intended to identify and spatially locate relatively small objects scattered over a large terrain is described in this paper. The system is modeled as a planar surface on the horizontal (XY) plane, with an acousto-optic Bragg cell on board an unmanned aerial vehicle (UAV) operating in the XZ plane. The Bragg cell is excited by a chirped RF signal with a designed frequency ramp. As the scanning beam reflects off the horizontal surface, a detector placed strategically at a suitable altitude (in the analysis shown to be on board the UAV itself) picks up the ...


Modeling Of Power Spectral Density Of Modified Von Karman Atmospheric Phase Turbulence And Acousto-Optic Chaos Using Scattered Intensity Profiles Over Discrete Time Intervals, Monish Ranjan Chatterjee, Fathi H.A. Mohamed 2016 University of Dayton

Modeling Of Power Spectral Density Of Modified Von Karman Atmospheric Phase Turbulence And Acousto-Optic Chaos Using Scattered Intensity Profiles Over Discrete Time Intervals, Monish Ranjan Chatterjee, Fathi H.A. Mohamed

Monish R. Chatterjee

In recent research, propagation of plane electromagnetic (EM) waves through a turbulent medium with modified von Karman phase characteristics was modeled and numerically simulated using transverse planar apertures representing narrow phase turbulence along the propagation path.

The case for extended turbulence was also studied by repeating the planar phase screens multiple times over the propagation path and incorporating diffractive effects via a split-step algorithm. The goal of the research reported here is to examine two random phenomena: (a) atmospheric turbulence due to von Karman-type phase fluctuations, and (b) chaos generated in an acousto-optic (A-O) Bragg cell under hybrid feedback. The ...


Investigation Of Negative Refractive Index In Reciprocal Chiral Materials, Monish Ranjan Chatterjee, Partha P. Banerjee, Pradeep R. Anugula 2016 University of Dayton

Investigation Of Negative Refractive Index In Reciprocal Chiral Materials, Monish Ranjan Chatterjee, Partha P. Banerjee, Pradeep R. Anugula

Monish R. Chatterjee

It is well known that there exist both natural materials (such as milk or sugar solution) possessing chiral (or handed) properties, as well as an increasing list of man-made materials (such as sodium bromate) that exhibit chirality. One of the principal properties of chirality is that light of any arbitrary polarization, when propagating through a chiral material, splits up into two circular polarizations propagating in different directions. In the past decade or longer, researchers have investigated electromagnetic transverse (plane) wave propagation across a non-chiral/chiral interface, and determined the electromagnetic Fresnel coefficients for such propagation. Traditionally, such coefficients are derived ...


Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey 2016 University of Dayton

Investigation Of Negative Index In Dispersive, Chiral Materials Via Contra-Propagating Velocities Under Second-Order Dispersion (Gvd), Monish Ranjan Chatterjee, Tarig A. Algadey

Monish R. Chatterjee

Negative refractive index arises typically in metamaterials via multiple routes. One such avenue is the condition where the Poynting vector of the electromagnetic wave is in opposition to the group velocity in the material. An earlier work along this route in a chiral material led to the well-known result of requiring very large (non-realizable) chirality.

Thereafter, a combination of chirality together with first-order dispersion was examined using plane wave electromagnetic analysis. To arrive at the conclusions in that approach, the three wave velocities (energy, group and phase) were derived under first-order dispersion in permittivity, permeability and chirality. Negative index in ...


Information Encryption And Retrieval In Mid-Rf Range Using Acousto-Optic Chaos, Monish Ranjan Chatterjee, Abhinay Kundur 2016 University of Dayton

Information Encryption And Retrieval In Mid-Rf Range Using Acousto-Optic Chaos, Monish Ranjan Chatterjee, Abhinay Kundur

Monish R. Chatterjee

In recent work, low-frequency AC signal encryption, decryption and retrieval using system-parameter based keys at the receiver stage of an acousto-optic (A-O) Bragg cell under first-order feedback have been demonstrated [1,2]. The corresponding nonlinear dynamics have also been investigated using the Lyapunov exponent and the so-called bifurcation maps [3]. The results were essentially restricted to A-O chaos around 10 KHz, and (baseband) signal bandwidths in the 1-4 KHz range. The results have generally been satisfactory, and parameter tolerances (prior to severe signal distortion at the output) in the ±5% - ±10% range have been obtained. Periodic AC waveforms, and a ...


Investigation Of Electronic Holography Using Spice Computer Simulation Experiments, Monish Ranjan Chatterjee 2016 University of Dayton

Investigation Of Electronic Holography Using Spice Computer Simulation Experiments, Monish Ranjan Chatterjee

Monish R. Chatterjee

Using SPICE experiments, it has been possible to verify most of the important aspects of electronic holography. The generation and properties of dynamic echoes under different types of nonlinearities have been extensively tested, and some new information has been garnered in the process. The case of pulse and generalized memory echoes has also been tested, and the results have been fairly satisfactory. Most of all, the simplicity with which the intriguing concept of memory echoes has translated into the circuit implementation on SPICE, and the closeness of the results to predicted behavior have been somewhat of a pleasant surprise.

Since ...


Digital Commons powered by bepress