Open Access. Powered by Scholars. Published by Universities.®

Electrical and Electronics Commons

Open Access. Powered by Scholars. Published by Universities.®

4,261 Full-Text Articles 4,908 Authors 2,166,256 Downloads 99 Institutions

All Articles in Electrical and Electronics

Faceted Search

4,261 full-text articles. Page 3 of 120.

Effect Of Wireless Communication Delay On Dc Microgrids Performance, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed 2018 CUNY City College

Effect Of Wireless Communication Delay On Dc Microgrids Performance, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

This paper investigates the effect of wireless communication technologies latency on the converters and the bus voltage of centrally communication based controlled DC microgrids (MGs) during islanding. A DC microgrid with its communication based control scheme was modeled to show the impact of latency. Simulation results show that the impact may be severe depending on the design, and the operational condition of the microgrid before latency occurs.


Impact Of Communication Latency On The Bus Voltage Of Centrally Controlled Dc Microgrid During Islanding, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed 2018 CUNY City College

Impact Of Communication Latency On The Bus Voltage Of Centrally Controlled Dc Microgrid During Islanding, Mahmoud Saleh, Yusef Esa, Ahmed Mohamed

Publications and Research

Maintaining a sustainable and reliable source of energy to supply critical loads within a renewable energy based microgrid (MG) during blackouts is directly related to its bus voltage variations. For example, voltage variation might trigger protection devices and disconnect DERs within the MG. Centrally controlled MGs (CCMGs) type is dependent on communication. Therefore, it is very important to analyze the impact of communication networks performance degradation, such as latency, on the bus voltage of CCMGs. This paper investigates the effect of wireless communication technologies latency on the bus voltage and performance of centralized DC MGs. Two mathematical models were developed ...


The Study Of Reconfigurable Antennas And Associated Circuitry, Kansheng Yang 2018 Dublin Institute of Technology

The Study Of Reconfigurable Antennas And Associated Circuitry, Kansheng Yang

Doctoral

This research focuses on the design of pattern reconfigurable antennas and the associated circuitry. The proposed pattern reconfigurable antenna designs benefit from advantages such as maximum pattern diversity and optimum switching circuits to realise 5G reconfigurable antennas. Whereas MIMO based solutions can provide increased channel capacity, they demand high computational capability and power consumption due to multiple channel processing. This prevents their use in many applications most notably in the Internet of Things where power consumption is of key importance. A switched-beam diversity allows an energy-efficient solution improving the link budget even for small low-cost battery operated IoT/sensor network ...


Non-Destructive Characterization Of Rotated Uniaxial Anisotropic Materials, Alexander G. Knisely 2018 Air Force Institute of Technology

Non-Destructive Characterization Of Rotated Uniaxial Anisotropic Materials, Alexander G. Knisely

Theses and Dissertations

Electromagnetic material characterization of anisotropic media requires measurement diversity, minimal measurement uncertainty and insight into sample symmetry. Additionally, non-destructive characterization techniques are valued over legacy measurement techniques because a destructive approach requires sample preparation to execute a measurement. A Single Port Waveguide Probe (SPWP) non-destructive material characterization technique is proposed to accommodate measuring a metal backed, known thickness, rotated uniaxial anisotropic material. A rotated uniaxial sample possesses unique transverse constitutive components and a longitudinal constitutive component which is the same as one of the transverse values. The SPWP consists of a rectangular waveguide aperture cut in the center of a ...


Forward Electrophysiological Modeling And Inverse Problem For Uterine Contractions During Pregnancy, Mengxue Zhang 2018 Washington University in St. Louis

Forward Electrophysiological Modeling And Inverse Problem For Uterine Contractions During Pregnancy, Mengxue Zhang

Engineering and Applied Science Theses & Dissertations

Uterine contractile dysfunction during pregnancy is a significant healthcare challenge that imposes heavy medical and financial burdens on both human beings and society. In the U.S., about 12% of babies are born prematurely each year, which is a leading cause of neonatal mortality and increases the possibility of having subsequent health problems. Post-term birth, in which a baby is born after 42 weeks of gestation, can cause risks for both the newborn and the mother. Currently, there is a limited understanding of how the uterus transitions from quiescence to excitation, which hampers our ability to detect labor and treat ...


Self-Powered Time-Keeping And Time-Of-Occurrence Sensing, Liang Zhou 2018 Washington University in St. Louis

Self-Powered Time-Keeping And Time-Of-Occurrence Sensing, Liang Zhou

Engineering and Applied Science Theses & Dissertations

Self-powered and passive Internet-of-Things (IoT) devices (e.g. RFID tags, financial assets, wireless sensors and surface-mount devices) have been widely deployed in our everyday and industrial applications. While diverse functionalities have been implemented in passive systems, the lack of a reference clock limits the design space of such devices used for applications such as time-stamping sensing, recording and dynamic authentication. Self-powered time-keeping in passive systems has been challenging because they do not have access to continuous power sources. While energy transducers can harvest power from ambient environment, the intermittent power cannot support continuous operation for reference clocks. The thesis of ...


Statistical Performance Analysis Of Sparse Linear Arrays, Mianzhi Wang 2018 Washington University in St. Louis

Statistical Performance Analysis Of Sparse Linear Arrays, Mianzhi Wang

Engineering and Applied Science Theses & Dissertations

Direction-of-arrival (DOA) estimation remains an important topic in array signal processing. With uniform linear arrays (ULAs), traditional subspace-based methods can resolve only up to M-1 sources using M sensors. On the other hand, by exploiting their so-called difference coarray model, sparse linear arrays, such as co-prime and nested arrays, can resolve up to O(M^2) sources using only O(M) sensors. Various new sparse linear array geometries were proposed and many direction-finding algorithms were developed based on sparse linear arrays. However, the statistical performance of such arrays has not been analytically conducted. In this dissertation, we (i) study the ...


Multi-Gpu Acceleration Of Iterative X-Ray Ct Image Reconstruction, Ayan Mitra 2018 Washington University in St. Louis

Multi-Gpu Acceleration Of Iterative X-Ray Ct Image Reconstruction, Ayan Mitra

Engineering and Applied Science Theses & Dissertations

X-ray computed tomography is a widely used medical imaging modality for screening and diagnosing diseases and for image-guided radiation therapy treatment planning. Statistical iterative reconstruction (SIR) algorithms have the potential to significantly reduce image artifacts by minimizing a cost function that models the physics and statistics of the data acquisition process in X-ray CT. SIR algorithms have superior performance compared to traditional analytical reconstructions for a wide range of applications including nonstandard geometries arising from irregular sampling, limited angular range, missing data, and low-dose CT. The main hurdle for the widespread adoption of SIR algorithms in multislice X-ray CT reconstruction ...


Spice Based Compact Model For Electrical Switching Of Antiferromagnet, Xe Jin Chan, Jan Kaiser, Pramey Upadhyaya 2018 Purdue University

Spice Based Compact Model For Electrical Switching Of Antiferromagnet, Xe Jin Chan, Jan Kaiser, Pramey Upadhyaya

The Summer Undergraduate Research Fellowship (SURF) Symposium

A simulation framework that can model the behavior of antiferromagnets (AFMs) is essential to building novel high-speed devices. The electrical switching of AFMs allows for high performance memory applications. With new phenomena in spintronics being discovered, there is a need for flexible and expandable models. With that in mind, we developed a model for AFMs which can be used to simulate AFM switching behavior in SPICE. This approach can be modified for adding modules, keeping pace with new developments. The proposed AFM switching model is based on the Landau-Lifshitz-Gilbert equation (LLG). LLG along with an exchange coupling module is implemented ...


Study Of The Effective Thermal Conductivity Of Polymer Composites With Varying Filler Arrangements, Debraliz Isaac Aragones, Rajath Kantharaj, Aaditya Candadai, Amy Marconnet 2018 University of Central Florida

Study Of The Effective Thermal Conductivity Of Polymer Composites With Varying Filler Arrangements, Debraliz Isaac Aragones, Rajath Kantharaj, Aaditya Candadai, Amy Marconnet

The Summer Undergraduate Research Fellowship (SURF) Symposium

Alternative thermal management solutions for electronic devices are being widely explored due to the increasing heat concentration that results from shrinking sizes and increasing power of modern electronics. Clearly, there is a need to spread the heat effectively in these systems, and polymer composites can potentially provide high thermal conductivity at low filler fraction while maintaining desirable mechanical properties for electronic packaging. The present study aims to investigate the effective thermal conductivity of various copper filler arrangements in a polymer matrix. The polymer composites are fabricated using laser cut acrylic templates to embed aligned copper rods in epoxy and create ...


Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin 2018 Purdue University

Experimental Evaluation Of A Krypton Propellant Arrangement In A T-100-3 Hall-Effect Thruster, Adam Patel, Javier Cortina Fernandez, Justin Chow, Osvaldo Alejandro Martin, Alexey Shashurin

The Summer Undergraduate Research Fellowship (SURF) Symposium

Stationary Hall thrusters are electric, moderate-specific impulse propulsion systems developed in Russia. These devices manipulate electric and magnetic fields to expel ionized gas (plasma) components, resulting in thrust. The success of Hall-effect engines in USSR satellite-transfer missions quickly sparked western interest in the design. Extensive government and academic study commenced shortly after the dissolution of the Soviet Union, when the technology was made available to the United States. The common SPT-100 model was the primary subject of such studies. Unfortunately, limited literature exists for rare and uncommon Hall thruster models. The T-100-3 stationary plasma thruster suffers from this gap; few ...


Resistive Solid State Protective Device, Amin Khanlar 2018 University of Wisconsin-Milwaukee

Resistive Solid State Protective Device, Amin Khanlar

Theses and Dissertations

Abstract: This thesis describes and explains different fault to characterize fault specifically for DC distribution systems and DC Microgrids fed by synchronous generators. This will result in a testbed for static and intermittent line-to-line faults, and in future work, various types of ground faults. Automaton allows for repeated testing at various voltage levels and precise control over intermittent fault generation. The fault generator is implemented with an IGBT H-bridge topology. Its physical implementation and benefits are described. Experimental results are shown for static line-to-line fault. This testbed will be used to help develop closed-form expressions. Once fault currents are characterized ...


Accuracy Improvement Of Pedestrian Trajectory Prediction By An Extended Kalman Filter And Pedestrian Behavior Classification, Jiayu Guo 2018 Rose-Hulman Institute of Technology

Accuracy Improvement Of Pedestrian Trajectory Prediction By An Extended Kalman Filter And Pedestrian Behavior Classification, Jiayu Guo

Graduate Theses - Electrical and Computer Engineering

The objective of this thesis is to improve the accuracy of predicting motion trajectory, i.e., speed and direction, of a pedestrian in front of an Ego Vehicle which has a Mobileye camera with an advanced driver assistance system (ADAS). The Ego Vehicle captures and records videos of pedestrians in front of it, and these videos are analyzed to predict a pedestrian trajectory from instantaneous, random actions of a pedestrian. Instant actions include, but are not limited to, walking at a constant speed, sudden accelerations/decelerations, sudden dodging from the Ego Vehicle, sudden advancements to the Ego Vehicle, sudden withdrawals ...


Hybrid Perovskite Characterization And Device Applications., Kasun Fernando 2018 University of Louisville

Hybrid Perovskite Characterization And Device Applications., Kasun Fernando

Electronic Theses and Dissertations

Hybrid perovskites are a group of materials that has shown a great impact in the field of scientific research in the past decade due to the efficiency gain within a short period of time. Hot casting is one technique that has been producing high efficient and stable solar cells. Electrical transportation of lateral device structure by such film is explored to understand basic properties and predict possible device applications using it. Under dark, memristive ability of the film was explored using various experiments. Unique uni-polar memristor ability was observed. Using the experimental results, a model is hypothesized using the concepts ...


High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen 2018 University of Louisville

High Dynamic Range Optical Devices And Applications., Elijah Robert Jensen

Electronic Theses and Dissertations

Much of what we know about fundamental physical law and the universe derives from observations and measurements using optical methods. The passive use of the electromagnetic spectrum can be the best way of studying physical phenomenon in general with minimal disturbance of the system in the process. While for many applications ambient visible light is sufficient, light outside of the visible range may convey more information. The signals of interest are also often a small fraction of the background, and their changes occur on time scales so quickly that they are visually imperceptible. This thesis reports techniques and technologies developed ...


Cmos Radioactive Isotope Identification With Multichannel Analyzer And Embedded Neural Network, Samuel Murray 2018 University of Nebraska-Lincoln

Cmos Radioactive Isotope Identification With Multichannel Analyzer And Embedded Neural Network, Samuel Murray

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

A radiation detection and identification system is designed and implemented to perform gamma ray spectroscopy on radioactive sources and identify which isotopes are present in the sources. A multichannel analyzer is implemented on an ASIC to process the signal produced from gamma rays detected by a scintillator and photomultiplier tube and to quantize the gamma ray energies to build a histogram. A fast, low memory embedded neural network is implemented on a microcontroller ASIC to identify the isotopes present in the gamma ray histogram produced by the multichannel analyzer in real time.

Advisors: Sina Balkir and Michael Homan


Transformerless High-Power Medium-Voltage Multi-Module Pv Converters, Hasan Bayat 2018 The University of Western Ontario

Transformerless High-Power Medium-Voltage Multi-Module Pv Converters, Hasan Bayat

Electronic Thesis and Dissertation Repository

This thesis is focused on the modular multilevel converter (MMC) for Photovoltaic (PV) applications. It is an attempt to address the issues associated with the modeling, control, and power mismatch elimination of the MMC-based PV systems. Firstly, a new real power reference generation scheme is proposed that creates a linear relationship between the real power reference of the system and the dc link voltage of the submodules. Further, a new power mismatch elimination strategy is proposed for the MMC-based PV system which ensures balanced currents are delivered to the host grid regardless of leg and arm power mismatches. The thesis ...


Capacitive Pcb Security For Active Tamper And Alteration Detection, Casey Petersen 2018 University of New Mexico

Capacitive Pcb Security For Active Tamper And Alteration Detection, Casey Petersen

Electrical and Computer Engineering ETDs

The purpose of the research presented is to establish the viability of using capacitive based sensors for the purpose of hardware security at the Printed Circuit Board (PCB) level. Capacitive sensors are traditionally used to sense changes to the areas surrounding the sensing pads in applications such as sensing proximity, position, humidity, fluid levels and much more.

The specific sensor used for this research is an inductor-capacitor (LC) based Capacitance-to-Digital Converter. This configuration is virtually immune to EM noise because it is a tank circuit and therefore filters out the noise which, in the past, caused reliability issues with these ...


Integration Of Rfid And Industrial Wsns To Create A Smart Industrial Environment, Ning Pan 2018 The University of Western Ontario

Integration Of Rfid And Industrial Wsns To Create A Smart Industrial Environment, Ning Pan

Electronic Thesis and Dissertation Repository

A smart environment is a physical space that is seamlessly embedded with sensors, actuators, displays, and computing devices, connected through communication networks for data collection, to enable various pervasive applications. Radio frequency identification (RFID) and Wireless Sensor Networks (WSNs) can be used to create such smart environments, performing sensing, data acquisition, and communication functions, and thus connecting physical devices together to form a smart environment.

This thesis first examines the features and requirements a smart industrial environment. It then focuses on the realization of such an environment by integrating RFID and industrial WSNs. ISA100.11a protocol is considered in particular ...


Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee 2018 University of Massachusetts Amherst

Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee

Zlatan Aksamija

The steady-state behavior of thermal transport in bulk and nanostructured semiconductors has been widely
studied, both theoretically and experimentally. On the other hand, fast transients and frequency dynamics of
thermal conduction has been given less attention. The frequency response of thermal conductivity has become
more crucial in recent years, especially in light of the constant rise in the clock frequencies in microprocessors
and terahertz sensing applications. Thermal conductivity in response to a time-varying temperature field starts
decaying when the frequency exceeds a cutoff frequency Omega_c, which is related to the inverse of phonon relaxation time τ, on the order of ...


Digital Commons powered by bepress