Open Access. Powered by Scholars. Published by Universities.®

Biomaterials Commons

Open Access. Powered by Scholars. Published by Universities.®

644 Full-Text Articles 1,064 Authors 575,013 Downloads 80 Institutions

All Articles in Biomaterials

Faceted Search

644 full-text articles. Page 14 of 29.

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch 2018 University of Connecticut

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch

University Scholar Projects

Recent advances in the field of biomaterials have suggested that cells cultured on substrates resembling the native tissue mechanical properties, matrix and growth factor composition, and topography can adopt phenotypes that more closely resemble the in vivo tissue compared to cells cultured on non-mimetic constructs. Understanding the effect of culture substrate on in vitro tissue formation is important for bioengineering applications that include mechanistic studies of healthy tissue function and development of disease models. In this work, Caco-2 adenocarcinoma cells were seeded on flat and crypt-like topographies of 3D-printed cytocompatible hydrogels derived from silk fibroin protein. Silk hydrogels were selected …


Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch 2018 University of Connecticut

Effect Of Silk-Based Hydrogel Topography On Intestinal Epithelial Cell Morphology And Wound Healing In Vitro, Marisa E. Boch

Honors Scholar Theses

Recent advances in the field of biomaterials have suggested that cells cultured on substrates resembling the native tissue mechanical properties, matrix and growth factor composition, and topography can adopt phenotypes that more closely resemble the in vivo tissue compared to cells cultured on non-mimetic constructs. Understanding the effect of culture substrate on in vitro tissue formation is important for bioengineering applications that include mechanistic studies of healthy tissue function and development of disease models. In this work, Caco-2 adenocarcinoma cells were seeded on flat and crypt-like topographies of 3D-printed cytocompatible hydrogels derived from silk fibroin protein. Silk hydrogels were selected …


Analysis Of Biological Response To Ecm Hydrogel Injection, Grady Dunlap 2018 University of Arkansas

Analysis Of Biological Response To Ecm Hydrogel Injection, Grady Dunlap

Biomedical Engineering Undergraduate Honors Theses

Abstract

Under normal circumstances, skeletal muscle possesses the capacity to regenerate and heal via inflammatory and myogenic pathways. In cases of severe tissue loss or certain diseases, this capacity is lost, often resulting in loss of tissue function. Extracellular matrix (ECM), the protein scaffold which houses cells in physiological tissue, has been shown to have structural and chemical properties which influence cell migration and phenotype. This results in ECM’s capacity to encourage a regenerative response when implanted into severely damaged skeletal muscle. Additional advantages are apparent when an ECM scaffold is digested into a hydrogel, namely less invasive implantation via …


Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims 2018 University of Louisville

Plga-Modified Nanoparticles For The Treatment Of Hypo-Vascularized Hpv-Related Cervical Cancers., Lee B. Sims

Electronic Theses and Dissertations

A major challenge associated with delivery of active agents in the female reproductive tract (FRT) is the ability of agents to efficiently diffuse through the cervicovaginal mucosa (CVM) and reach the underlying sub-epithelial immune cell layer and vasculature. A variety of drug delivery vehicles have been employed to improve the delivery of agents across the CVM and offer the capability to increase the longevity and retention of active agents to treat infections of the female reproductive tract. Nanoparticles (NPs) have been shown to improve retention, diffusion, and cell-specific targeting via specific surface modifications, relative to other delivery platforms. In particular, …


Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer 2018 University of Louisville

Materials Design With Polylactic Acid-Polyethylene Glycol Blends Using 3d Printing And For Medical Applications., Jeremiah R. Bauer

Electronic Theses and Dissertations

This thesis is an examination of two material systems derived from polylactic acid (PLA) and polyethylene glycol (PEG). PLA is a polymer commonly sourced from renewable sources such as starches and sugars. It is a relatively strong, biodegradable polymer, making it ideal for use in the body. Even though it has a relative high strength, PLA is also brittle leading to the use of plasticizers to increase flexibility. One such plasticizer is PEG, which is a material that can exist at room temperature as either a thin liquid, or a hard waxy solid depending on the molecular weight. The first …


Osteon Mimetic Scaffolding, Janay Clytus 2018 University of South Carolina - Columbia

Osteon Mimetic Scaffolding, Janay Clytus

Senior Theses

The purpose of this research is to provide an alternative to naturally derived bone grafts. There is a gap in the supply of donors and the demand of bone tissue. Artificial scaffold creation can work as an implant and decrease the shortage of bone grafts and increase the range of injuries that can be repaired. Current research focuses on optimizing mechanical properties such as porosity, improving vascularization using cells, and generating osteoconductivity. For osteodifferentiation, mesenchymal stem cells (MSCs) can differentiate into mesodermal lineages such as chondrocytes, osteoblasts, adipocytes, and tenocytes by supplementing cultures with lineage-specific soluble factors (Marchetti). Co-culturing ECFCs …


Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee 2018 Michigan Technological University

Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee

Bruce Lee

Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface …


Structure-Property Relationships Of Polymer Films And Hydrogels To Control Bacterial Adhesion, Kristopher W. Kolewe 2018 University of Massachusetts Amherst

Structure-Property Relationships Of Polymer Films And Hydrogels To Control Bacterial Adhesion, Kristopher W. Kolewe

Doctoral Dissertations

The emergence and spread of antibiotic resistance across microbial species necessitates the need for alternative approaches to mitigate the risk of infection without relying on commercial antibiotics. Biofilm-related infections are a class of notoriously difficult to treat healthcare-associated infections that frequently develop on the surface of implanted medical devices. As biofilm formation is a surface-associated phenomenon, understanding how the intrinsic properties of materials affect bacterial adhesion enables the development of structure-property relationships that can guide the future design of infection-resistant materials. Despite lacking visual, auditory, and olfactory perception, bacteria still manage to sense and attach to surfaces. Previously, it has …


Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal 2018 The University of Western Ontario

Covalently Crosslinked Organic/Inorganic Hybrid Biomaterials For Bone Tissue Engineering Applications, Dibakar Mondal

Electronic Thesis and Dissertation Repository

Scaffolds are key components for bone tissue engineering and regeneration. They guide new bone formation by mimicking bone extracellular matrix for cell recruitment and proliferation. Ideally, scaffolds for bone tissue engineering need to be osteoconductive, osteoinductive, porous, degradable and mechanically competent. As a single material can not provide all these requirements, composites of several biomaterials are viable solutions to combine various properties. However, conventional composites fail to fulfil these requirements due to their distinct phases at the microscopic level. Organic/inorganic (O/I) class II hybrid biomaterials, where the organic and inorganic phases are chemically crosslinked on a molecular scale, hence the …


Collective Adhesion And Displacement Of Retinal Progenitor Cells Upon Extracellular Matrix Substrates Of Transplantable Biomaterials, Ankush Thakur, Shawn Mishra, Juan Pena, Jing Zhou, Stephen Redenti, Robert Majeska, Maribel Vazquez 2018 CUNY City College

Collective Adhesion And Displacement Of Retinal Progenitor Cells Upon Extracellular Matrix Substrates Of Transplantable Biomaterials, Ankush Thakur, Shawn Mishra, Juan Pena, Jing Zhou, Stephen Redenti, Robert Majeska, Maribel Vazquez

Publications and Research

Strategies to replace retinal photoreceptors lost to damage or disease rely upon the migration of replacement cells transplanted into sub-retinal spaces. A significant obstacle to the advancement of cell transplantation for retinal repair is the limited migration of transplanted cells into host retina. In this work, we examine the adhesion and displacement responses of retinal progenitor cells on extracellular matrix substrates found in retina as well as widely used in the design and preparation of transplantable scaffolds. The data illustrate that retinal progenitor cells exhibit unique adhesive and displacement dynamics in response to poly-l-lysine, fibronectin, laminin, hyaluronic acid, and Matrigel. …


Developing Vascular Graft From Adipose-Derived Stem Cells, Ashley C. Apil 2018 Wayne State University

Developing Vascular Graft From Adipose-Derived Stem Cells, Ashley C. Apil

Research Opportunities for Engineering Undergraduates (ROEU) Program 2017-18

This project aims to differentiate adipose-derived stem cells into fibroblasts through the addition of platelet-derived growth factor (PDGF) into the culture media. Differentiation protocol will be optimized, then successful differentiation will be verified through PCR analysis. The ASC-fibroblasts will then be seeded into a ring construct as outlined by the protocol by Lam et al. The ring constructs will be tensile tested and analyzed through histology to characterize their strength and cellularity.


Synthesis And Characterization Of Blue Light Poly(Β-Amino Ester)S, Nicholas John Kohrs 2018 University of Kentucky

Synthesis And Characterization Of Blue Light Poly(Β-Amino Ester)S, Nicholas John Kohrs

Theses and Dissertations--Biomedical Engineering

Volumetric muscle loss (VML) is a debilitating injury which results in full or partial loss of function. Current clinical options utilize tissue grafts and bracing to restore function. Tissue graft implantation oftentimes leads to serious complications, some of which end in graft rejection and thereby necessitate further surgeries and procedures. Polymeric scaffolds show promise as scaffolding systems due to their mechanical properties and overall degradation profiles. Scaffolds need appropriate mechanical properties, 10-60 kPa modulus, and overall degradation times, five days to two weeks, to initiate tissue regeneration. Poly(β-amino ester)s (PBAE), a class of synthetic polymers, act as a safe biocompatible …


Decellularized Matrices Effect On The Adaptive Immune Response, Kegan Sowers 2018 Virginia Commonwealth University

Decellularized Matrices Effect On The Adaptive Immune Response, Kegan Sowers

Theses and Dissertations

Decellularized extracellular matrices have been a growing area of interest in the biomedical engineering fields of tissue engineering and regenerative medicine.As these materials move toward clinical applications, the immune response to these materials will be a driving force toward their success in clinical approaches. Fully digested decellularized matrix constructs derived from porcine liver, muscle and lung were created to test the adaptive immune response. Hydrogel characterization ensured that the materials had relatively similar stiffness levels to reduce variability, and in vitro studies were conducted. Each individual construct as well as a gelatin control were plated with a co-culture of macrophages …


Engineering Surface Properties To Modulate Inflammation And Stem Cell Recruitment Through Macrophage Activation, Kelly M. Hotchkiss 2018 Biomedical Engineering

Engineering Surface Properties To Modulate Inflammation And Stem Cell Recruitment Through Macrophage Activation, Kelly M. Hotchkiss

Theses and Dissertations

Biomaterials are becoming the most commonly used therapeutic method for treatment of lost or damaged tissue in the body. Metallic materials are chosen for high strength orthopaedic and dental applications. Titanium (Ti) implants are highly successful in young, healthy patients with the ability to fully integrate to surrounding tissue. However the main population requiring these corrective treatments will not be healthy or young, therefore further research into material modifications have been started to improve outcomes in compromised patients. The body’s immune system will generate a response to any implanted material, and control the final outcome. Among the first and most …


Development Of Entubulation Strategies For Treating Central Nervous System Injuries, Ivy Brosch 2018 The University of Akron

Development Of Entubulation Strategies For Treating Central Nervous System Injuries, Ivy Brosch

Williams Honors College, Honors Research Projects

According to the McKnight Brain Institute, at least 10,000 people annually in the USA suffer from a central nervous system (CNS) injury. These injuries can cause serve disabilities including paralysis. Due to the complexity of the spinal cord, it is common that potential CNS treatments are first applied to an optic nerve crush (ONC) model in rats. Two proposed treatments were employed; one where nerve growth factor (NGF) was immobilized to a chitosan substrate to stimulate axonal regeneration, and the other using pentadecafluorooctanoyl chloride modified methacrylamide chitosan (MAC(Ali15)F) hydrogel to enhance local oxygenation. The two different treatments were formed into …


Effects Of Protein-Coated Nanofibers On Conformation Of Gingival Fibroblast Spheroids: Potential Utility For Connective Tissue Regeneration, Gili Kaufman, Ryan A. Whitescarver, Laiz Nunes, Xavier-Lewis Palmer, Drago Skrtic, Wojtek Tutak 2018 Old Dominion University

Effects Of Protein-Coated Nanofibers On Conformation Of Gingival Fibroblast Spheroids: Potential Utility For Connective Tissue Regeneration, Gili Kaufman, Ryan A. Whitescarver, Laiz Nunes, Xavier-Lewis Palmer, Drago Skrtic, Wojtek Tutak

Engineering Technology Faculty Publications

Deep wounds in the gingiva caused bytrauma or surgery require a rapid and robust healing of connective tissues. Wepropose utilizing gas-brushed nanofibers coated with collagen and fibrin for that purpose. Our hypotheses are that protein-coated nanofibers will: (i) attract and mobilize cells in various spatial orientations, and (ii) regulate the expression levels ofspecific extracellular matrix (ECM)-associated proteins, determining the initial conformational nature ofdense and soft connective tissues. Gingival fibroblast monolayers and3D spheroids were cultured onECMsubstrate and covered with gas-blown poly-(DL-lactide-co-glycolide)(PLGA) nanofibers (uncoated/coated with collagen and fibrin). Cell attraction and rearrangement was followed byF-actin staining and confocal microscopy. Thicknesses ofthe cell …


Integration Of Biology, Ecology And Engineering For Sustainable Algal‑Based Biofuel And Bioproduct Biorefinery, James Allen, Serpil Unlu, Yaşar Demirel, Paul N. Black, Wayne R. Riekhof 2018 University of Nebraska-Lincoln

Integration Of Biology, Ecology And Engineering For Sustainable Algal‑Based Biofuel And Bioproduct Biorefinery, James Allen, Serpil Unlu, Yaşar Demirel, Paul N. Black, Wayne R. Riekhof

Department of Chemical and Biomolecular Engineering: Faculty Publications

Despite years of concerted research efforts, an industrial-scale technology has yet to emerge for production and conversion of algal biomass into biofuels and bioproducts. The objective of this review is to explore the ways of possible integration of biology, ecology and engineering for sustainable large algal cultivation and biofuel production systems. Beside the costs of nutrients, such as nitrogen and phosphorous, and fresh water, upstream technologies which are not ready for commercialization both impede economic feasibility and conflict with the ecological benefits in the sector. Focusing mainly on the engineering side of chemical conversion of algae to biodiesel has also …


Reversibly Switching Adhesion Of Smart Adhesives Inspired By Mussel Adhesive Chemistry, Ameya R. Narkar 2018 Michigan Technological University

Reversibly Switching Adhesion Of Smart Adhesives Inspired By Mussel Adhesive Chemistry, Ameya R. Narkar

Dissertations, Master's Theses and Master's Reports

Catecholic groups in mussel adhesive proteins transition from being strongly adhesive in a reduced state under acidic conditions to being weakly adhesive in an oxidized state under basic conditions. Here, we exploit this pH responsive behavior of catechol and demonstrate that its oxidation state can be manipulated by incorporation of boronic acid to facilitate reversible transitions between strong and weak adhesion. Our first approach involved the addition of 3- acrylamido phenylboronic acid (APBA) to dopamine methacrylamide (DMA) containing adhesives. The synthesized adhesives showed strong adhesion to quartz surface in an acidic medium (pH 3), while weak adhesion was observed on …


Characterization Of Bacteriorhodopsin And Halorhodopsin Reconstituted In Lipid Bilayer Membranes, Joel Domkam Kamwa 2018 University of Arkansas, Fayetteville

Characterization Of Bacteriorhodopsin And Halorhodopsin Reconstituted In Lipid Bilayer Membranes, Joel Domkam Kamwa

Graduate Theses and Dissertations

Motivated to produce electricity with photon activated ion pumps, the main purpose of this work was to characterize the photosynthetic membrane proteins bacteriorhodopsin (proton pump) and halorhodopsin (chloride pump). The proteins were re-suspended in lipid bilayers. For this work, an experimental set-up was built which included: chambers for lipid bilayer formation and characterization, lasers for ion pump activation, and an AxoPatch electrophysiology system for small photocurrent measurement. Lipid bilayer membranes were formed using mostly folding method: folding two monolayers together. The membranes were characterized by their resistance, capacitance, and generated photocurrent. Photocurrent was generated upon illumination of lipid-protein membranes with …


An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal 2018 Michigan Technological University

An Injectable Thermosensitive Biodegradable Hydrogel Embedded With Snap Containing Plla Microparticles For Sustained Nitric Oxide (No) Delivery For Wound Healing, Nikhil Mittal

Dissertations, Master's Theses and Master's Reports

After injury, wound healing is a complex sequential cascade of events essential for the proper recovery of the wound without the scar formation. Nitric oxide (NO) is a small, endogenous free-radical gas with antimicrobial, vasodilating and growth factor stimulating properties. NO has wide biomedical application especially in wound healing however, its usability is hindered due its administration problem as it is highly unstable.

In this work, poly (l-lactic acid) microparticles encapsulated with NO donor S-nitroso-N-acetyl-D-penicillamine (SNAP) were prepared using water-in-oil-water double emulsion solvent evaporation method for controlled delivery for NO at the specific site. The NO release from SNAP-PLLA microparticles …


Digital Commons powered by bepress