Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,084 Full-Text Articles 1,867 Authors 560,140 Downloads 57 Institutions

All Articles in Biological Engineering

Faceted Search

1,084 full-text articles. Page 7 of 28.

Secretion Of Bioplastic Polymers From Methanotrophic Bacteria Grown Using Natural Gas, Chad L. Nielsen, Charles D. Miller 2016 Utah State University

Secretion Of Bioplastic Polymers From Methanotrophic Bacteria Grown Using Natural Gas, Chad L. Nielsen, Charles D. Miller

Research Week

Biodegradable bioplastics show promise as a replacement for traditional plastics. Cost of production due to the cost of feedstocks and separation/purification processes are the main obstacles to widespread use of bioplastics. The possibility of reducing these costs through using methane gas as a feedstock and genetically transforming a methanotrophic bacterium to secrete bioplastics was investigated through experimentation. The bacteria are a promising option for bioplastic production.


Hyaluronic Acid-Conjugated Liposome Nanoparticles For Targeted Delivery To Cd44 Overexpressing Glioblastoma Cells, Stephen L. Hayward, Christina L. Wilson, Srivatsan Kidambi 2016 University of Nebraska-Lincoln

Hyaluronic Acid-Conjugated Liposome Nanoparticles For Targeted Delivery To Cd44 Overexpressing Glioblastoma Cells, Stephen L. Hayward, Christina L. Wilson, Srivatsan Kidambi

Chemical and Biomolecular Engineering -- All Faculty Papers

Glioblastoma Multiforme (GBM) is a highly prevalent and deadly brain malignancy characterized by poor prognosis and restricted disease management potential. Despite the success of nanocarrier systems to improve drug/gene therapy for cancer, active targeting specificity remains a major hurdle for GBM. Additionally, since the brain is a multi-cell type organ, there is a critical need to develop an approach to distinguish between GBM cells and healthy brain cells for safe and successful treatment. In this report, we have incorporated hyaluronic acid (HA) as an active targeting ligand for GBM. To do so, we employed HA conjugated liposomes (HALNPs) to ...


Brain Tumor In A Dish: Glioma/Astrocyte Co-Cultures As A Model For In Vitro Studies, Erin Eickman, Christina Wilson, Srivatsan Kidambi 2016 University of Nebraska-Lincoln

Brain Tumor In A Dish: Glioma/Astrocyte Co-Cultures As A Model For In Vitro Studies, Erin Eickman, Christina Wilson, Srivatsan Kidambi

UCARE Research Products

This study seeks to engineer an in vitro co-culture model to elucidate the role of glioma-astrocyte interactions on molecular changes in the tumor microenvironment. The use of patterned co-cultures created with polyelectrolyte multilayers and micromolding in capillaries will allow tthe investigation of cell-cell communication. This study will lead to better understanding of the role of healthy cells in cancer progression and potential treatment options.


Utilizing Brain-Computer Interfacing To Control Neuroprosthetic Devices, Cheyne J. Angy 2016 Liberty University

Utilizing Brain-Computer Interfacing To Control Neuroprosthetic Devices, Cheyne J. Angy

Senior Honors Theses

Advances in neuroprosthetics in recent years have made an enormous impact on the quality of life for many people with disabilities, helping them regain the functionality of damaged or impaired abilities. One of the main hurdles to regaining full functionality regarding neuroprosthetics is the integration between the neural prosthetic device and the method in which the neural prosthetic device is controlled or manipulated to function correctly and efficiently. One of the most promising methods for integrating neural prosthetics to an efficient method of control is through Brian-computer Interfacing (BCI). With this method, the neuroprosthetic device is integrated into the human ...


The Use Of Microfluidics And Dielectrophoresis For Separation, Concentration, And Identification Of Bacteria, Cynthia Hanson, Michael Sieverts, Karen Tew, Annelise Dykes, Michaela Salisbury, Elizabeth Vargis 2016 Utah State University

The Use Of Microfluidics And Dielectrophoresis For Separation, Concentration, And Identification Of Bacteria, Cynthia Hanson, Michael Sieverts, Karen Tew, Annelise Dykes, Michaela Salisbury, Elizabeth Vargis

Biological Engineering Faculty Publications

Traditional bacterial identification methods take one to two days to complete, relying on large bacteria colonies for visual identification. In order to decrease this analysis time in a cost-effective manner, a method to sort and concentrate bacteria based on the bacteria's characteristics itself is needed. One example of such a method is dielectrophoresis, which has been used by researchers to separate bacteria from sample debris and sort bacteria according to species. This work presents variations in which dielectrophoresis can be performed and their associated drawbacks and benefits specifically to bacterial identification. In addition, a potential microfluidic design will be ...


Collagen And Elastin Based Tissue Engineered Vascular Grafts, Alan J. Ryan 2016 Royal College of Surgeons in Ireland

Collagen And Elastin Based Tissue Engineered Vascular Grafts, Alan J. Ryan

PhD theses

Cardiovascular disease is the leading cause of death worldwide, accounting for 29% of all global deaths and is set to rise to 23 million deaths a year by 2030 (World Health Organisation, 2012). Arterial bypassing, both peripheral and coronary, is usually performed with autologously harvested vessels. However, the quantity available is often very limited as well as the vessels of elderly patients often suffering from thrombus, aneurysm formation or arthrosclerosis in high pressure arterial sites. The shortcomings of autografts has led to a substantial amount of research being directed towards tissue engineered vascular grafts (TEVGs) (Kakisis et al., 2005). Currently ...


Development Of A Glucose-Powered Biobattery For Implantation And Use In Humans, Carson Sparks, Cody Maughan, Lucas Smith, Carson Sparks 2016 Utah State University

Development Of A Glucose-Powered Biobattery For Implantation And Use In Humans, Carson Sparks, Cody Maughan, Lucas Smith, Carson Sparks

Research on Capitol Hill

With current demands for implantable electrical devices increasing, the need for a more stable and biocompatible source of power is becoming increasingly necessary. Several battery types and materials were evaluated. Ultimately, an abiotic biobattery was designed with the goal of implantation in the human body. Nafion, single-walled carbon nanotubes (SWCNTs), and gold were used to create an abiotic biobattery that is powered by glucose.

The SWCNTs were used to create the cathode, the gold was used to fabricate the anode, and the Nafion acted as the separator between the cathode and anode. A thin Nafion membrane was evaluated for overlaying ...


Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day 2016 Utah State University

Beyond The Fiber: Novel Spider Silk Coatings And Adhesives, Danielle A. Gaztambide, Breton A. Day

Research on Capitol Hill

Natural spider silks have long been recognized for their combination of incredible strength and elasticity. Spider silk is more elastic than nylon, tougher than Kevlar, and stronger than steel by weight. Due to an inability to farm spiders, much work has been done to produce spider silks in transgenic hosts for large -scale production. Our work was done using recombinant spider silk proteins produced in transgenic goats and the bacteria E. coli.

More recently spider silks have also been recognized for their biocompatibility and lack of immunogenicity. Spider silks' incredible strength and ability to be implanted safely within the body ...


Zeta Potential: Key To Harvesting Algae For Biofuels And Bioproducts, Celeste Hancock, Michael Flores 2016 Utah State University

Zeta Potential: Key To Harvesting Algae For Biofuels And Bioproducts, Celeste Hancock, Michael Flores

Research on Capitol Hill

  • Algae is an effective and sustainable resource for creating a broad spectrum of bioproducts.
  • Scientists have found it challenging to harvest algae due to the difficulty of collecting algae when in an aqueous solution such as wastewater.
  • Rotating Algal Biofilm Reactors (RABRs) coated with carbon nanotubes have proved effective. The RABR floats in an aqueous environment and attracts charged algal particles in suspension.
  • The tendency for algae to favor suspension over coagulation occurs only when particles of algae are sufficiently charged. This charge can be measured by analyzing the electric potential at the interface between the surface of a particle ...


Improved Production Of Promising Antioxidant, Resveratrol, In Escherichia Coli, Chad Skidmore 2016 Utah State University

Improved Production Of Promising Antioxidant, Resveratrol, In Escherichia Coli, Chad Skidmore

Research on Capitol Hill

Resveratrol is a promising antioxidant natural product. Studies have shown that it is effective against heart disease, cancer, Alzheimer's disease, diabetes, and harmful UV rays. This health-benefiting molecule is present in plants such as peanuts, berries, and the skin of red grapes.

A growth time of 10 months makes Japanese knotweed an impractical source of resveratrol. A more efficient way to produce resveratrol has been found by using E. coli as tiny biological factories.


Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments, Katherine Jean Reeder Lewis 2016 University of Colorado Boulder

Modeling Alveolar Epithelial Cell Behavior In Spatially Designed Hydrogel Microenvironments, Katherine Jean Reeder Lewis

Chemical & Biological Engineering Graduate Theses & Dissertations

The alveolar epithelium consists of two cell phenotypes, elongated alveolar type I cells (AT1) and rounded alveolar type II cells (ATII), and exists in a complex three-dimensional environment as a polarized cell layer attached to a thin basement membrane and enclosing a roughly spherical lumen. Closely surrounding the alveolar cysts are capillary endothelial cells as well as interstitial pulmonary fibroblasts. Many factors are thought to influence alveolar epithelial cell differentiation during lung development and wound repair, including physical and biochemical signals from the extracellular matrix (ECM), and paracrine signals from the surrounding mesenchyme. In particular, disrupted signaling between the alveolar ...


Use Of Lidar In The Design Of Grassed Waterways: Case Study In Agricultural Management In Oklahoma, Annette Sparks 2016 Michigan Technological University

Use Of Lidar In The Design Of Grassed Waterways: Case Study In Agricultural Management In Oklahoma, Annette Sparks

Dissertations, Master's Theses and Master's Reports

Before the advent of Light Detection and Ranging (LiDAR) technology, farm-level infrastructure for sustainable agriculture was designed using topographic maps. LiDAR is a remote sensing method whereby reflected laser pulses are measured to generate high-resolution 3D images of the terrain. This report compares these two methods in the design of grassed waterways for flood drainage and evaluates how the quantitative difference between the two methods can affect the overall hydrologic design. The benefits of LiDAR are expected to be higher accuracy and precision in design, as well as greater reproducibility or consistency, regardless of the designer. To carry out this ...


Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne 2016 Michigan Technological University

Inhibition Of Bacterial Growth And Prevention Of Bacterial Adhesion With Localized Nitric Oxide Delivery, Julia Osborne

Dissertations, Master's Theses and Master's Reports

Bacterial infections continue to be a problem at the site of an indwelling medical device, and over the years, various bacterial strains have become more resistant to current antibiotic treatments. Bacterial infection at an indwelling medical device can be dangerous and affect the performance of the medical device which can ultimately lead to the failure of the device due to bacterial resistance to treatment.

Nitric Oxide (NO) has been shown to possess antibacterial properties to prevent and inhibit bacterial growth. NO releasing coatings on indwelling medical devices could provide a reduction in bacterial infections that occur at the device site ...


Automated Solid-Substrate Cultivation Of The Anaerobic Bacterium Clostridium Thermocellum, Mathew J. Ruwaya 2016 University of Kentucky

Automated Solid-Substrate Cultivation Of The Anaerobic Bacterium Clostridium Thermocellum, Mathew J. Ruwaya

Theses and Dissertations--Biosystems and Agricultural Engineering

The organism Clostridium thermocellum grows on cellulosic substrates and produces ethanol, acetate, lactate, formic acid, and CO2. The organic acids produced alter the growth environment in which the bacteria grows and ultimately inhibit bacterial growth. One method which has been used successfully to maintain the system at acceptable growth conditions is to intermittently flush out the spent media and metabolic products and replace with new fermentation media. Our goal was to design and build an automated system that will automatically flush the spent media from the growing culture and resupply new media without manual intervention. An automated control system ...


Retargeting The Clostridium Botulinum C2 Toxin To The Neuronal Cytosol, Benjamin J. Pavlik, Elizabeth J. Hruska, Kevin E. Van Cott, Paul H. Blum 2016 University of Nebraska- Lincoln

Retargeting The Clostridium Botulinum C2 Toxin To The Neuronal Cytosol, Benjamin J. Pavlik, Elizabeth J. Hruska, Kevin E. Van Cott, Paul H. Blum

Chemical and Biomolecular Engineering -- All Faculty Papers

Many biological toxins are known to attack specific cell types, delivering their enzymatic payloads to the cytosol. This process can be manipulated by molecular engineering of chimeric toxins. Using toxins with naturally unlinked components as a starting point is advantageous because it allows for the development of payloads separately from the binding/translocation components. Here the Clostridium botulinum C2 binding/translocation domain was retargeted to neural cell populations by deleting its non-specific binding domain and replacing it with a C. botulinum neurotoxin binding domain. This fusion protein was used to deliver fluorescently labeled payloads to Neuro-2a cells. Intracellular delivery was ...


Optimization Of Micropillar Sequences For Fluid Flow Sculpting, Daniel Stoecklein, Chueh-Yu Wu, Donghyuk Kim, Dino Di Carlo, Baskar Ganapathysubramanian 2016 Iowa State University

Optimization Of Micropillar Sequences For Fluid Flow Sculpting, Daniel Stoecklein, Chueh-Yu Wu, Donghyuk Kim, Dino Di Carlo, Baskar Ganapathysubramanian

Mechanical Engineering Publications

Inertial fluid flow deformation around pillars in a microchannel is a new method for controlling fluid flow. Sequences of pillars have been shown to produce a rich phase space with a wide variety of flow transformations. Previous work has successfully demonstrated manual design of pillar sequences to achieve desired transformations of the flow cross section, with experimental validation. However, such a method is not ideal for seeking out complex sculpted shapes as the search space quickly becomes too large for efficient manual discovery.We explore fast, automated optimization methods to solve this problem. We formulate the inertial flow physics in ...


Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen 2016 University of Massachusetts Amherst

Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen

Doctoral Dissertations

The tumor extracellular matrix (ECM) plays an important role in facilitating tumor growth and mediating tumor cells' resistance to drugs. However, during drug development, potential chemotherapeutics are screened in plastic plates, which lack relevant ECM physicochemical cues. In order to improve drug development process, this dissertation includes the development of relevant 2D and 3D biomaterial systems that can be used to study carcinoma cell response to drug treatment.

A novel poly(ethylene glycol)-phosphorylcholine (PEG-PC) high-throughput biomaterial platform was developed to study how the ECM mechanochemical properties affect cancer cells' response to drug. The PEG-PC biomaterial is optically transparent, has ...


Rational Design Of Rama-Labeled Nanoparticles For A Dual-Modaility, Light Scattering Immunoassay On A Polystyrene Seubstrate, Nathan D. Israelsen, Donald Wooley, Cynthia Hanson, Elizabeth Vargis 2016 Utah State University

Rational Design Of Rama-Labeled Nanoparticles For A Dual-Modaility, Light Scattering Immunoassay On A Polystyrene Seubstrate, Nathan D. Israelsen, Donald Wooley, Cynthia Hanson, Elizabeth Vargis

Biological Engineering Faculty Publications

Background: Surface-enhanced Raman scattering (SERS) is a powerful light scattering technique that can be used for sensitive immunoassay development and cell labeling. A major obstacle to using SERS is the complexity of fabricating SERS probes since they require nanoscale characterization and optical uniformity. The light scattering response of SERS probes may also be modulated by the substrate used for SERS analysis. A typical SERS substrate such as quartz can be expensive. Polystyrene is a cheaper substrate option but can decrease the SERS response due to interfering Raman emission peaks and high background fluorescence. The goal of this research is to ...


Microbubble Assisted Polyhydroxybutyrate Production In Escherichia Coli, Kadriye Innan, Fulya Ay Sal, Asif Rahman, Ryan J. Putman, Foster A. Agblevor, Charles D. Miller 2016 Utah State University

Microbubble Assisted Polyhydroxybutyrate Production In Escherichia Coli, Kadriye Innan, Fulya Ay Sal, Asif Rahman, Ryan J. Putman, Foster A. Agblevor, Charles D. Miller

Biological Engineering Faculty Publications

Background

One of the potential limitations of large scale aerobic Escherichia coli fermentation is the need for increased dissolved oxygen for culture growth and bioproduct generation. As culture density increases the poor solubility of oxygen in water becomes one of the limiting factors for cell growth and product formation. A potential solution is to use a microbubble dispersion (MBD) generating device to reduce the diameter and increase the surface area of sparged bubbles in the fermentor. In this study, a recombinantE. coli strain was used to produce polyhydroxybutyrate (PHB) under conventional and MBD aerobic fermentation conditions.

Results

In conventional ...


Accounting For Host Cell Protein Behavior In Anion-Exchange Chromatography, Ryan K. Swanson, Ruo Xu, Daniel S. Nettleton, Charles Glatz 2016 Iowa State University

Accounting For Host Cell Protein Behavior In Anion-Exchange Chromatography, Ryan K. Swanson, Ruo Xu, Daniel S. Nettleton, Charles Glatz

Chemical and Biological Engineering Publications

Host cell proteins (HCP) are a problematic set of impurities in downstream processing (DSP) as they behave most similarly to the target protein during separation. Approaching DSP with the knowledge of HCP separation behavior would be beneficial for the production of high purity recombinant biologics. Therefore, this work was aimed at characterizing the separation behavior of complex mixtures of HCP during a commonly used method: anion-exchange chromatography (AEX). An additional goal was to evaluate the performance of a statistical methodology, based on the characterization data, as a tool for predicting protein separation behavior. Aqueous two-phase partitioning followed by two-dimensional electrophoresis ...


Digital Commons powered by bepress