Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

1,172 Full-Text Articles 1,840 Authors 560,140 Downloads 53 Institutions

All Articles in Biological Engineering

Faceted Search

1,172 full-text articles. Page 3 of 32.

Tin Dioxide-Carbon Heterostructures Applied To Gas Sensing: Structure-Dependent Properties And General Sensing Mechanism, Catherine Marichy, Patricia A. Russo, Mariangela Latino, Jean-Philippe Tessonnier, Marc-Georg Wilinger, Nicola Donato, Giovanni Neri, Nicola Pinna 2017 University of Aveiro

Tin Dioxide-Carbon Heterostructures Applied To Gas Sensing: Structure-Dependent Properties And General Sensing Mechanism, Catherine Marichy, Patricia A. Russo, Mariangela Latino, Jean-Philippe Tessonnier, Marc-Georg Wilinger, Nicola Donato, Giovanni Neri, Nicola Pinna

Jean-Philippe Tessonnier

Carbon materials such as carbon nanotubes (CNTs), graphene, and reduced graphene oxide (RGO) exhibit unique electrical properties, which are also influenced by the surrounding atmosphere. They are therefore promising sensing materials. Despite the existence of studies reporting the gas-sensing properties of metal oxide (MOx) coated nanostructured carbon, an incomplete understanding of their sensing mechanism remains. Here we report a systematic study on the preparation, characterization, and sensing properties of CNT and RGO composites with SnO2 coating. Atomic layer deposition (ALD) was applied to the conformal coating of the inner and outer walls of CNTs with thin films of SnO2 of ...


Mixed-Surface, Lipid-Tethered Quantum Dots For Targeting Cells And Tissues, Yanjie Zhang, Amanda Haage, Elizabeth M. Whitley, Ian C. Schneider, Aaron R. Clapp 2017 Iowa State University

Mixed-Surface, Lipid-Tethered Quantum Dots For Targeting Cells And Tissues, Yanjie Zhang, Amanda Haage, Elizabeth M. Whitley, Ian C. Schneider, Aaron R. Clapp

Ian C. Schneider

Quantum dots (QDs), with their variable luminescent properties, are rapidly transcending traditional labeling techniques in biological imaging and hold vast potential for biosensing applications. An obstacle in any biosensor development is targeted specificity. Here we report a facile procedure for creating QDs targeted to the cell membrane with the goal of cell-surface protease biosensing. This procedure generates water-soluble QDs with variable coverage of lipid functional groups. The resulting hydrophobicity is quantitatively controlled by the molar ratio of lipids per QD. Appropriate tuning of the hydrophobicity ensures solubility in common aqueous cell culture media and while providing affinity to the lipid ...


Epitaxially Grown Collagen Fibrils Reveal Diversity In Contact Guidance Behavior Among Cancer Cells, Juan Wang, Joseph W. Petefish, Andrew C. Hillier, Ian C. Schneider 2017 Iowa State University

Epitaxially Grown Collagen Fibrils Reveal Diversity In Contact Guidance Behavior Among Cancer Cells, Juan Wang, Joseph W. Petefish, Andrew C. Hillier, Ian C. Schneider

Ian C. Schneider

Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology ...


Cellular Contractility And Extracellular Matrix Stiffness Regulate Matrix Metalloproteinase Activity In Pancreatic Cancer Cells, Amanda Haage, Ian C. Schneider 2017 Iowa State University

Cellular Contractility And Extracellular Matrix Stiffness Regulate Matrix Metalloproteinase Activity In Pancreatic Cancer Cells, Amanda Haage, Ian C. Schneider

Ian C. Schneider

The pathogenesis of cancer is often driven by local invasion and metastasis. Recently, mechanical properties of the tumor microenvironment have been identified as potent regulators of invasion and metastasis, while matrix metalloproteinases (MMPs) are classically known as significant enhancers of cancer cell migration and invasion. Here we have been able to sensitively measure MMP activity changes in response to specific extracellular matrix (ECM) environments and cell contractility states. A pancreatic cancer cell line, Panc-1 cells, up-regulate MMP activities between 3- and 10- fold with increased cell contractility. Conversely, they down-regulate MMP activities when contractility is blocked to levels seen with ...


Collagen Attachment To The Substrate Controls Cell Clustering Through Migration, Yue Hou, Laura L. Rodriguez, Juan Wang, Ian C. Schneider 2017 Iowa State University

Collagen Attachment To The Substrate Controls Cell Clustering Through Migration, Yue Hou, Laura L. Rodriguez, Juan Wang, Ian C. Schneider

Ian C. Schneider

Cell clustering and scattering play important roles in cancer progression and tissue engineering. While the extracellular matrix (ECM) is known to control cell clustering, much of the quantitative work has focused on the analysis of clustering between cells with strong cell-cell junctions. Much less is known about how the ECM regulates cells with weak cell-cell contact. Clustering characteristics were quantified in rat adenocarcinoma cells, which form clusters on physically adsorbed collagen substrates, but not on covalently attached collagen substrates. Covalently attaching collagen inhibited desorption of collagen from the surface. While changes in proliferation rate could not explain differences seen in ...


The Number Of Lines A Cell Contacts And Cell Contractility Drive The Efficiency Of Contact Guidance, Nicholas R. Romsey, Yue Hou, Laura L. Rodriguez, Ian C. Schneider 2017 Iowa State University

The Number Of Lines A Cell Contacts And Cell Contractility Drive The Efficiency Of Contact Guidance, Nicholas R. Romsey, Yue Hou, Laura L. Rodriguez, Ian C. Schneider

Ian C. Schneider

Cell migration is an important biological function that impacts many physiological and pathological processes. Often migration is directed along various densities of aligned fibers of collagen, a process called contact guidance. However, cells adhere to other components in the extracellular matrix, possibly affecting migrational behavior. Additionally, changes in intracellular contractility are well known to affect random migration, but its effect on contact guidance is less known. This study examines differences in directed migration in response to variations in the spacing of collagen, non-specific background adhesion strength and myosin II-mediated contractility. Collagen was microcontact printed onto glass substrates and timelapse live-cell ...


H Emagglutinin-Based Polyanhydride Nanovaccines Against H5n1 Influenza Elicit Protective Virus Neutralizing Titers And Cell-Mediated Immunity, Kathleen Alaine Ross, Hyelee Park Loyd, Wuwei Wu, Lucas Mark Huntimer, Shaheen Ahmed, Anthony Sambol, Scott Broderick, Zachary Flickinger, Krishna Rajan, Tatiana Bronich, Surya K. Mallapragada, Michael J. Wannemuehler, Susan Long Carpenter, Balaji Narasimhan 2017 Iowa State University

H Emagglutinin-Based Polyanhydride Nanovaccines Against H5n1 Influenza Elicit Protective Virus Neutralizing Titers And Cell-Mediated Immunity, Kathleen Alaine Ross, Hyelee Park Loyd, Wuwei Wu, Lucas Mark Huntimer, Shaheen Ahmed, Anthony Sambol, Scott Broderick, Zachary Flickinger, Krishna Rajan, Tatiana Bronich, Surya K. Mallapragada, Michael J. Wannemuehler, Susan Long Carpenter, Balaji Narasimhan

Balaji Narasimhan

H5N1 avian influenza is a significant global concern with the potential to become the next pandemic threat. Recombinant subunit vaccines are an attractive alternative for pandemic vaccines compared to traditional vaccine technologies. In particular, polyanhydride nanoparticles encapsulating subunit proteins have been shown to enhance humoral and cell-mediated immunity and provide protection upon lethal challenge. In this work, a recombinant H5 hemagglutinin trimer (H53) was produced and encapsulated into polyanhydride nanoparticles. The studies performed indicated that the recombinant H53 antigen was a robust immunogen. Immunizing mice with H53 encapsulated into polyanhydride nanoparticles induced high neutralizing antibody titers and enhanced CD4+ T ...


Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz 2017 California Polytechnic State University, San Luis Obispo

Development And Characterization Of Tissue Engineered Blood Vessel Mimics Under "Diabetic" Conditions, Shelby Gabrielle Kunz

Master's Theses and Project Reports

The development of tissue engineered blood vessel mimics for the testing of intravascular devices in vitro has been established in the Cal Poly tissue engineering lab. Due to the prevalence of cardiovascular disease in diabetic patients and minimal accessible studies regarding the interactions between diabetes and intravascular devices used to treat vascular disease, there is a need for the development of diabetic models that more accurately represents diabetic processes occurring in the blood vessels, primarily endothelial dysfunction. This thesis aimed to create a diabetic blood vessel mimic by implementing a high glucose environment for culturing human endothelial cells from healthy ...


Epitaxially Grown Collagen Fibrils Reveal Diversity In Contact Guidance Behavior Among Cancer Cells, Juan Wang, Joseph W. Petefish, Andrew C. Hillier, Ian C. Schneider 2017 Iowa State University

Epitaxially Grown Collagen Fibrils Reveal Diversity In Contact Guidance Behavior Among Cancer Cells, Juan Wang, Joseph W. Petefish, Andrew C. Hillier, Ian C. Schneider

Andrew C. Hillier

Invasion of cancer cells into the surrounding tissue is an important step during cancer progression and is driven by cell migration. Cell migration can be random, but often it is directed by various cues such as aligned fibers composed of extracellular matrix (ECM), a process called contact guidance. During contact guidance, aligned fibers bias migration along the long axis of the fibers. These aligned fibers of ECM are commonly composed of type I collagen, an abundant structural protein around tumors. In this paper, we epitaxially grew several different patterns of organized type I collagen on mica and compared the morphology ...


Decoding And Reprogramming Fungal Iterative Nonribosomal Peptide Synthetases, Daya Yu, Fuchao Xu, Shuwei Zhang, Jixun Zhan 2017 Utah State University

Decoding And Reprogramming Fungal Iterative Nonribosomal Peptide Synthetases, Daya Yu, Fuchao Xu, Shuwei Zhang, Jixun Zhan

Biological Engineering Faculty Publications

Nonribosomal peptide synthetases (NRPSs) assemble a large group of structurally and functionally diverse natural products. While the iterative catalytic mechanism of bacterial NRPSs is known, it remains unclear how fungal NRPSs create products of desired length. Here we show that fungal iterative NRPSs adopt an alternate incorporation strategy. Beauvericin and bassianolide synthetases have the same C1-A1-T1-C2-A2-MT-T2a-T2b-C3 domain organization. During catalysis, C3 and C2 take turns to incorporate the two biosynthetic precursors into the growing depsipeptide chain that swings between T1 and T ...


A Tunable, Three-Dimensional In Vitro Culture Model Of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds, Alek G. Erickson, Taylor D. Laughlin, Sarah Romereim, Catherine Sargus-Patino, Angela K. Pannier, Andrew T. Dudley 2017 University of Nebraska Medical Center

A Tunable, Three-Dimensional In Vitro Culture Model Of Growth Plate Cartilage Using Alginate Hydrogel Scaffolds, Alek G. Erickson, Taylor D. Laughlin, Sarah Romereim, Catherine Sargus-Patino, Angela K. Pannier, Andrew T. Dudley

Biological Systems Engineering: Papers and Publications

Defining the final size and geometry of engineered tissues through precise control of the scalar and vector components of tissue growth is a necessary benchmark for regenerative medicine, but it has proved to be a significant challenge for tissue engineers. The growth plate cartilage that promotes elongation of the long bones is a good model system for studying morphogenetic mechanisms because cartilage is composed of a single cell type, the chondrocyte; chondrocytes are readily maintained in culture; and growth trajectory is predominately in a single vector. In this cartilage, growth is generated via a differentiation program that is spatially and ...


Mri Applications In Tissue Engineering, Shadi Othman 2017 University of the Pacific

Mri Applications In Tissue Engineering, Shadi Othman

Science Seminar Series

Shadi Othman of the School of Engineering and Computer Science Bioengineering Program, will speak on his research on MRI applications in tissue engineering.


Pairing Of Anaerobic And Aerobic Treatment Of Petroleum Wastewater, Zachary Fica 2017 Utah State University

Pairing Of Anaerobic And Aerobic Treatment Of Petroleum Wastewater, Zachary Fica

Undergraduate Honors Capstone Projects

The objective of this project was to treat petroleum refinery wastewater using a combination of anaerobic and aerobic processes, namely an Up-flow Anaerobic Sludge Blanket (UASB) reactor paired with a Rotation Algae Biofilm Reactor (RABR), respectively, to produce a treated effluent. The treatment method developed needed to produce a cost-effective and efficient way to decrease nitrogen, phosphorous, total suspended solids (TSS), and COD concentrations to below State of Utah limitations. It was demonstrated that RABR treatment was capable of reducing effluent concentrations of nitrogen, phosphorus, and TSS to State of Utah limitations. RABR treatment did not significantly reduce COD from ...


Effect Of Storage Temperature And Time On Lyophilized Water Bark Extract's Biological Activity, Jillian Schneider 2017 University of Arkansas, Fayetteville

Effect Of Storage Temperature And Time On Lyophilized Water Bark Extract's Biological Activity, Jillian Schneider

Biological and Agricultural Engineering Undergraduate Honors Theses

Sweetgum bark extract has been known to show biological activities such as antimicrobial and antioxidant capabilities. The storage capacity of the extract, however, was unknown and previously thought to diminish over time. However, upon experimentation, the freeze-dried sweetgum bark extract showed no signs that storage time or storage temperature had any significant effect on the biological activities. There was no significant difference across storage temperature over time in the experiment (ANOVA RM, P0.05). Therefore, the antioxidant capabilities of the sweetgum extract were not affected by the storage time or temperature treatments studied in this work. For the antimicrobial experiment ...


Optogenetic Investigations Of The Prebötzinger Complex: Support For The Dbx1 Core Hypothesis, Francis D. Pham 2017 College of William and Mary

Optogenetic Investigations Of The Prebötzinger Complex: Support For The Dbx1 Core Hypothesis, Francis D. Pham

Undergraduate Honors Theses

The preBötzinger complex (preBötC) is the central pattern generator for inspiratory behaviors. Previous studies on perinatal mice and in vitro suggest that Dbx1-derived neurons within the preBötC form the core oscillator. Here, we provide support for the Dbx1 core hypothesis and show that Dbx1-derived neurons are essential for respiratory rhythmogenesis in adult mice. Using optogenetic strategies, we transiently hyperpolarized Dbx1 neurons of the preBötC in vitro and in adult mice. In both cases, the inspiratory rhythm was disrupted. It is possible that axons from Dbx1 neurons projecting into the preBötC were also hyperpolarized, leading to disfacilitation. To determine if this ...


Characterization Of Murine Breast Cancer Cell Lines For Anti-Cancer Vaccine, Haven N. Frazier 2017 University of Arkansas, Fayetteville

Characterization Of Murine Breast Cancer Cell Lines For Anti-Cancer Vaccine, Haven N. Frazier

Biological Sciences Undergraduate Honors Theses

Breast cancer is the most commonly diagnosed cancer in women and the second leading cause of cancer death among women in the United States (1). While treatments involving radiation and chemotherapy currently exist, disease must be detected early in order for the treatments to be somewhat effective, and there is no effective treatment after metastasis occurs (2). Additionally, current therapies do not mitigate tumor immunosuppression. Decreasing the tumor-associated immunosuppressive conditions while activating antitumor immunity could prevent recurrence and metastasis, possibly leading to an effective treatment for cancer (3). Tumor cell vaccines could possibly address this issue and have become a ...


Characterization And Manipulation Of Lipid Self-Assembly To Construct Stable, Portable Synthetic Lipid Bilayers, Guru Anand Venkatesan 2017 University of Tennessee, Knoxville

Characterization And Manipulation Of Lipid Self-Assembly To Construct Stable, Portable Synthetic Lipid Bilayers, Guru Anand Venkatesan

Doctoral Dissertations

The overarching goal of this research work is to further our understanding of lipid self-assembly and its organization at an oil-water interface to support the development of synthetic lipid bilayer systems that can be used in biologically relevant fields such as membrane biophysics, protein electrophysiology, development of synthetic biomolecules, drugs, nanoparticles and other applications. Self-assembly kinetics and interfacial properties of lipid monolayers formed at a liquid-air and liquid-liquid interface are characterized using Langmuir-Blodgett trough and pendant drop tensiometer. Insights gained from these studies not only allow us to answer questions related to droplet interface bilayer (DIB; a promising technique to ...


Anaerobic Digestion Of Wastewater: Effects Of Inoculants And Nutrient Management On Biomethane Production And Treatment, Jason Peterson 2017 Utah State University

Anaerobic Digestion Of Wastewater: Effects Of Inoculants And Nutrient Management On Biomethane Production And Treatment, Jason Peterson

All Graduate Theses and Dissertations

Due to population expiation and the increased awareness of the impact on the environment by wastewater treatment, improved wastewater treatment systems are needed to treat municipal and agricultural wastewater. Treating wastewater with oxygen decreases carbon compounds at the expense of energy to move carbon and oxygen to be in contact with each other. Anaerobic digestion of wastewater can reduce the cost by utilizing microbes to treat high amounts of carbon in wastewater without the need for extensive oxygen requirement. With a proper balance of nutrients, microbes also produce methane, a renewable energy source.

It has been suggested that microalgae be ...


Alternative Treatment Technologies For Low-Cost Industrial And Municipal Wastewater Management, Alan J. Hodges 2017 Utah State University

Alternative Treatment Technologies For Low-Cost Industrial And Municipal Wastewater Management, Alan J. Hodges

All Graduate Theses and Dissertations

Roughly the same volume of water that rushes over the Niagara Falls is produced as wastewater in North America. This wastewater is treated through a variety of means to ensure that it can be safely returned to the natural ecosystem. This thesis examines two novel means for this treatment, one biological and one physical-chemical in nature, namely, Rotating Algae Biofilm Reactor treatment and expanded shale augmented coagulation-flocculation.

Rotating algae biofilm reactors (RABRs) support biofilm algae growth, and in turn, the algae take up harmful contaminants from the wastewater. This system was tested in wastewater from petroleum refining operations. The efficacy ...


Algae-Based Biofilm Productivity And Treatment Of Dairy Wastewater: Effects Of Temperature And Organic Carbon Concentration, Zachary T. Fica 2017 Utah State University

Algae-Based Biofilm Productivity And Treatment Of Dairy Wastewater: Effects Of Temperature And Organic Carbon Concentration, Zachary T. Fica

All Graduate Theses and Dissertations

Production of dairy and associated products is a source of millions of gallons of wastewater every year. Water used in cleaning feeding stalls as well as the liquid component of the animal waste are two of the major volumetric components of this wastewater. This water is nutrient rich, often limiting the viability as a land applied fertilizer. However, these same nutrients could be used as an inexpensive feedstock for the cultivation of algae, which can then be used to produce downstream products including animal feed and aquaculture.

As part of this study, algal biomass was cultivated on dairy wastewater from ...


Digital Commons powered by bepress