Open Access. Powered by Scholars. Published by Universities.®

Structures and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

601 Full-Text Articles 884 Authors 344,362 Downloads 65 Institutions

All Articles in Structures and Materials

Faceted Search

601 full-text articles. Page 20 of 22.

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski 2012 California Polytechnic State University, San Luis Obispo

Thermal Vacuum Integration For Cal Poly's Space Environments Laboratory, Chelsea Barackman, Steven Jackowski

Aerospace Engineering

The purpose of the senior project is to construct a thermal vacuum by utilizing a preexisting vacuum chamber in the Space Environments Lab, and a donated Advanced Thermal Sciences (ATS) chiller. While a thermal vacuum is already available on campus, building one for the Space Environments Lab would grant undergraduates access to the equipment, allowing a much better understanding of testing methods and procedures in use by the aerospace industry. This paper explains the design and analysis of the thermal vacuum (T-VAC) project as well as the operation and procedures required for the ATS chiller and fill/drain tank. The thermal …


Design Of A Human Powered Helicopter Airframe, Sheen Kao, Daniel Layton, Philip Sobol 2012 California Polytechnic State University - San Luis Obispo

Design Of A Human Powered Helicopter Airframe, Sheen Kao, Daniel Layton, Philip Sobol

Mechanical Engineering

In 1989 Cal Poly’s Da Vinci III was the first human powered helicopter (HPH) to achieve flight; our goal is to research and develop a new airframe for the next generation Da Vinci. This report outlines a brief history of human powered flight and details a method of constructing for the airframe. An optimized airframe geometry was also researched and is explained in detail.


Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera 2012 California Polytechnic State University - San Luis Obispo

Human Powered Helicopter: Rotor Structure, Joseph Ram, Juan Carlos Olvera

Mechanical Engineering

The following report encompasses the Human Powered Helicopter Rotor Team’s conceptual models and ideas based on research and modeling analysis. The following gives an overview of material researched, concept generation, analyzation, manufacturing, and testing for a rotor structure to be installed in a Human Powered Helicopter.


Modal Analysis Of Composite Structures With Damping Material, Kellie Michelle Tremaine 2012 California Polytechnic State University, San Luis Obispo

Modal Analysis Of Composite Structures With Damping Material, Kellie Michelle Tremaine

Master's Theses

The purpose of this study is to develop an analytical solution for modal analysis of actively damped orthotropic composite plates in bending and to verify it with experimental analysis.

The analytical modal analysis solution for composite plate dynamics is derived using Euler theory. This analysis applies to structures with orthotropic lamina of uniform material properties at any lamination angle. The bending-extensional coupling can be neglected for plates that are symmetric or approximately symmetric, which allows an exact solution for natural frequency and mode shape to be obtained. An exact solution can be found for natural vibration and in general.

The …


Development Of A Ground Based Atomic Oxygen And Vacuum Ultraviolet Radiation Simulation Apparatus, Max Jay Glicklin 2012 California Polytechnic State University, San Luis Obispo

Development Of A Ground Based Atomic Oxygen And Vacuum Ultraviolet Radiation Simulation Apparatus, Max Jay Glicklin

Master's Theses

The space environment possesses numerous unique and unusual attributes, creating challenges that must be considered in order to accomplish a successful space mission. Two of the detrimental aspects of the space environment include Atomic Oxygen, AO, and Ultraviolet, UV, radiation. UV radiation becomes more severe in space as there is no atmosphere to attenuate incoming photons, thereby exposing spacecraft to radiation that never reaches the surface of the Earth. Overall, space vehicles are exposed to a total of 107.4 Watts/m2 of light shorter than 400 nm. AO is created by the photo disassociation of molecular oxygen by UV radiation …


Feasibility Study Into The Use Of 3d Printed Materials In Cubesat Flight Missions, Daniel Fluitt 2012 California Polytechnic State University, San Luis Obispo

Feasibility Study Into The Use Of 3d Printed Materials In Cubesat Flight Missions, Daniel Fluitt

Master's Theses

The CubeSat Program has provided access to space for many universities, private companies, and government institutions primarily due to the low cost of CubeSat satellite development. While these costs are orders of magnitude lower than similarly capable nano-satellite missions, they are still outside of the budgetary constraints of many potential developers including university and high school clubs. Using 3D printed plastics in the production of CubeSat structures and mechanisms presents a large cost savings opportunity that will allow these institutions to participate in the development of these satellites, expanding the educational and scientific impact of the CubeSat Program.

Five rapid …


An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez 2012 California Polytechnic State University, San Luis Obispo

An Investigation Of Damage Arrestment Devices On Carbon Fiber Sandwich Specimens Under Dynamic Loading, Gabriel Sabino Sanchez

Master's Theses

This research studies the effects of a damage arrestment device embedded between a carbon fiber facesheet and foam core to find whether there is an increase in the structural integrity of the sandwich composites. Experimental and theoretical finite element analyses are implemented for two different composite sandwich geometries; plates and beams. Each structure consisted of the same loading criteria and was restricted to the same vibration fixture during the experiment. An accelerometer was placed on the composite plate to record the amplitude and the natural frequencies of the composite structure. Each composite specimen is then fixed to the surface of …


Humanitarian Response Unmanned Aircraft System (Hr-Uas), Justin T. Knott, David P. Brundage, John S. Campbell, D. Austin Eldridge, Shaun B. Hooker, Jake R. Mashburn, Jacob L. Philpott 2012 University of Tennessee, Knoxville

Humanitarian Response Unmanned Aircraft System (Hr-Uas), Justin T. Knott, David P. Brundage, John S. Campbell, D. Austin Eldridge, Shaun B. Hooker, Jake R. Mashburn, Jacob L. Philpott

Chancellor’s Honors Program Projects

No abstract provided.


Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen 2012 California Polytechnic State University, San Luis Obispo

Analysis And Testing Of Heat Transfer Through Honeycomb Panels, Daniel D. Nguyen

Aerospace Engineering

This project attempts to simulate accurately the thermal conductivity of honeycomb panels in the normal direction. Due to the large empty space of the honeycomb core, the thermal radiation mode of heat transfer was modeled along with conduction. Using Newton’s Method to solve for a steady state model of heat moving through the honeycomb panel, the theoretical effective thermal conduction of the honeycomb panel was found, ranging from 1.03 to 1.07 Q/m/K for a heat input of 2.5 W to 11.8 W. An experimental model was designed to test the theoretical results, using a cold plate and a heat plate …


Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark 2012 University of Arkansas, Fayetteville

Design Of Orbital Maneuvers With Aeroassisted Cubesatellites, Stephanie Clark

Graduate Theses and Dissertations

Recent advances within the field of cube satellite technology has allowed for the possible development of a maneuver that utilizes a satellite's Low Earth Orbit (LEO) and increased atmospheric density to effectively use lift and drag to implement a noncoplanar orbital maneuver. Noncoplanar maneuvers typically require large quantities of propellant due to the large delta-v that is required. However, similar maneuvers using perturbing forces require little or no propellant to create the delta-v required. This research reported here studied on the effects of lift on orbital changes, those of noncoplanar types in particular, for small satellites without orbital maneuvering thrusters. …


Peridynamic Model For Dynamic Fracture In Unidirectional Fiber-Reinforced Composites, Wenke Hu, Youn Doh Ha, Florin Bobaru 2012 University of Nebraska-Lincoln

Peridynamic Model For Dynamic Fracture In Unidirectional Fiber-Reinforced Composites, Wenke Hu, Youn Doh Ha, Florin Bobaru

Department of Mechanical and Materials Engineering: Faculty Publications

We propose a computational method for a homogenized peridynamics description of fiber-reinforced composites and we use it to simulate dynamic brittle fracture and damage in these materials. With this model we analyze the dynamic effects induced by different types of dynamic loading on the fracture and damage behavior of unidirectional fiber-reinforced composites. In contrast to the results expected from quasi-static loading, the simulations show that dynamic conditions can lead to co-existence of and transitions between fracture modes; matrix shattering can happen before a splitting crack propagates. We observe matrix–fiber splitting fracture, matrix cracking, and crack migration in the matrix, including …


Material Characterization For Composite Materials In Load Bearing Wave Guides, Gabriel Almodovar 2012 Air Force Institute of Technology

Material Characterization For Composite Materials In Load Bearing Wave Guides, Gabriel Almodovar

Theses and Dissertations

This study will establish a methodology to examine samples of composite material for application in a load bearing waveguide. The composite material will operate in a specific frequency range for applications in small RPAs. A graphite epoxy stiffening component will be primarily considered. Different nickel, graphene, and carbon nanotube (CNT) coatings and films will be applied to the graphite epoxy. Tests will determine the material's radio frequency (RF) performance for application as an antenna/waveguide component. The study will use scattering (S) parameters determined from a network analyzer to collect these data. The S parameters will then be used to resolve …


Creep Of Hi-Nicalon S Ceramic Fiber Tows At Elevated Temperature In Air And In Steam, Benjamin R. Steffens 2012 Air Force Institute of Technology

Creep Of Hi-Nicalon S Ceramic Fiber Tows At Elevated Temperature In Air And In Steam, Benjamin R. Steffens

Theses and Dissertations

Structural aerospace components require materials to have superior long-term mechanical properties that can withstand severe environmental conditions, such as high temperatures, high pressures and moisture, whilst enduring the loads they are designed for. Ceramic-matrix composites (CMCs) are capable of maintaining excellent strength and creep resistance at high temperatures, which make them attractive candidate materials for aerospace applications, particularly in propulsion. Silicon Carbide (SiC) ceramic fibers have been used as constituent materials in CMCs, although oxidation of the SiC to SiO2 has been a known degredation mechanism. Recently developed near stoichiometric SiC fibers have shown significant improvements in thermochemical stability; …


Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez 2012 California Polytechnic State University, San Luis Obispo

Feasibility Analysis For Electrically-Powered Hoverboard, Cameron Chan, Jason Cortez, Jay Lopez

Aerospace Engineering

Composite materials are engineered by combining two or more constituent materials with significantly different physical or chemical properties in such a way that the constituents are still distinguishable, and not fully blended. Due to today’s high rising prices of gasoline and aviation fuel costs, many manufacturers have turned to the use of lightweight composites in their designs due to the advantages of the composite material, which include outstanding strength, excellent durability, high heat resistance, and significant weight reduction that the composite material properties hold. The purpose of this project is to design and construct a composite structure for an electrically-powered …


The Effect Of Elevated Temperature On The Inelastic Deformation Behavior Of Pmr-15 Solid Polymer, Chad E. C. Ryther 2012 Air Force Institute of Technology

The Effect Of Elevated Temperature On The Inelastic Deformation Behavior Of Pmr-15 Solid Polymer, Chad E. C. Ryther

Theses and Dissertations

The inelastic deformation behavior of PMR-15 neat resin, a high-temperature thermoset polymer, was investigated at temperatures in the 274-316°C range. The experimental program was developed to explore the influence of temperature on tensile loading, relaxation and creep behaviors of PMR-15. The results demonstrate that the mechanical behavior of PMR-15 exhibits a strong dependence on temperature. During strain-controlled tensile loading, the slope of the stress-strain curve in the quasi-elastic region decreases and the flow stress level decreases with increasing temperature. During relaxation, the amount of the stress drop decreases with increasing temperature. Based on experimental results the Viscoplasticity Based on Overstress …


Design And Flight Testing Of A Warping Wing For Autonomous Flight Control, Edward Brady Doepke 2012 University of Kentucky

Design And Flight Testing Of A Warping Wing For Autonomous Flight Control, Edward Brady Doepke

Theses and Dissertations--Mechanical Engineering

Inflatable-wing Unmanned Aerial Vehicles (UAVs) have the ability to be packed in a fraction of their deployed volume. This makes them ideal for many deployable UAV designs, but inflatable wings can be flexible and don’t have conventional control surfaces. This thesis will investigate the use of wing warping as a means of autonomous control for inflatable wings. Due to complexities associated with manufacturing inflatable structures a new method of rapid prototyping deformable wings is used in place of inflatables to decrease cost and design-cycle time. A UAV testbed was developed and integrated with the warping wings and flown in a …


The Use Of Various Failure Criteria As Applied To High Speed Wear, David A. Huber 2011 Air Force Institute of Technology

The Use Of Various Failure Criteria As Applied To High Speed Wear, David A. Huber

Theses and Dissertations

This research has been aimed at developing methods to predict mechanical wear of sliding bodies at high velocities. Specifically, wear of test sled slippers at the Holloman High Speed Test Track at Holloman AFB, NM, is being considered. Developing a numerical model to represent the velocity range achieved at the test track is infeasible, so numerical modeling techniques must be adopted. Previous research has made use of finite element codes to simulate the high velocity sliding event. However, the extreme velocities at the test track can create numerical errors in the finite element codes. To avoid the numerical errors, an …


3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner 2011 University of California, San Diego

3d Simulation Of Wind Turbine Rotors At Full Scale. Part Ii: Fluid–Structure Interaction Modeling With Composite Blades, Y. Bazilevs, Ming-Chen Hsu, J. Kiendel, R. Wuchner, K. U. Bletzigner

Ming-Chen Hsu

In this two-part paper, we present a collection of numerical methods combined into a single framework, which has the potential for a successful application to wind turbine rotor modeling and simulation. In Part 1 of this paper we focus on: 1. The basics of geometry modeling and analysis-suitable geometry construction for wind turbine rotors; 2. The fluid mechanics formulation and its suitability and accuracy for rotating turbulent flows; 3. The coupling of air flow and a rotating rigid body. In Part 2, we focus on the structural discretization for wind turbine blades and the details of the fluid–structure interaction computational …


High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs 2011 University of California, San Diego

High-Performance Computing Of Wind Turbine Aerodynamics Using Isogeometric Analysis, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a high-performance computing framework for advanced flow simulation and its application to wind energy based on the residual-based variational multiscale (RBVMS) method and isogeometric analysis. The RBVMS formulation and its suitability and accuracy for turbulent flow in a moving domain are presented. Particular emphasis is placed on the parallel implementation of the methodology and its scalability. Two challenging flow cases were considered: the turbulent Taylor–Couette flow and the NREL 5 MW offshore baseline wind turbine rotor at full scale. In both cases, flow quantities of interest from the simulation results compare favorably with the reference …


The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya 2011 California Polytechnic State University, San Luis Obispo

The Effects Of Damage Arrestment Devices In Composite Plate Sandwiches With Fastener Holes, Mark Anderson, Nancy Hung Choy, Lacey Jones, Rita Kourskaya

Aerospace Engineering

Composite materials such as a carbon fiber are used in a variety of new technologies including aircraft, spacecraft, and motor vehicles. Carbon fiber has a high strength to weight ratio, a key advantage over other material options. This report discusses the use of composite damage arrestment devices (DADs) in composite sandwich panels with a foam core. There are three different curing cycles tested for the DADs: pressure only, vacuum only, and vacuum with 1000 lbs of pressure. Using a Tetrahedron Heat Press to cure the composite specimen and an Instron Machine to perform tensile testing, data was collected for each …


Digital Commons powered by bepress