Open Access. Powered by Scholars. Published by Universities.®

Aerodynamics and Fluid Mechanics Commons

Open Access. Powered by Scholars. Published by Universities.®

1,062 Full-Text Articles 1,377 Authors 852,337 Downloads 81 Institutions

All Articles in Aerodynamics and Fluid Mechanics

Faceted Search

1,062 full-text articles. Page 34 of 44.

Turbulent Transition In Electromagnetically Levitated Liquid Metal Droplets, Jie Zhao 2014 University of Massachusetts Amherst

Turbulent Transition In Electromagnetically Levitated Liquid Metal Droplets, Jie Zhao

Masters Theses

The condition of fluid flow has been proven to have a significant influence on a wide variety of material processes. In electromagnetic levitation (EML) experiments, the internal flow is driven primarily by electromagnetic forces. In 1-g, the positioning forces are very strong and the internal flows are turbulent. To reduce the flows driven by the levitation field, experiments may be performed in reduced gravity and parabolic flights experiments have been adopted as the support in advance. Tracer particles on the surface of levitated droplets in EML experiment performed by SUPOS have been used to investigate the transition from laminar to …


Response Of Transmission Line Conductors Under Downburst Wind, Haitham Aboshosha 2014 The University of Western Ontario

Response Of Transmission Line Conductors Under Downburst Wind, Haitham Aboshosha

Electronic Thesis and Dissertation Repository

Electricity is transmitted by Transmission Lines (TLs) from the source of production to the distribution system and then to the end consumers. Failure of a TL can lead to significant economic losses and to negative social consequences resulting from the interruption of power. High Intensity Winds (HIW), in the form of downbursts and tornadoes, are believed to be responsible for more than 80% of the weather-related failure of TLs around the world. The studies reported in this thesis are part of an ongoing extensive research program at Western University focusing on the response of TLs under HIW. Previous investigations conducted …


Microthruster Fabrication And Characterization: In Search Of The Optimal Nozzle Geometry For Microscale Rocket Engines, Katherine L. Fowee, Alina Alexeenko 2014 Purdue University

Microthruster Fabrication And Characterization: In Search Of The Optimal Nozzle Geometry For Microscale Rocket Engines, Katherine L. Fowee, Alina Alexeenko

The Summer Undergraduate Research Fellowship (SURF) Symposium

A major consideration in microsatellite design is the engineering of micropropulsion systems that can deliver the required thrust efficiently with tight restrictions on space, weight, and power. Cold gas thrusters are one solution to the demand for smaller propulsion systems to accommodate the advancements in technology that have allowed for a reduction in the size and thus the cost of satellites. While much research has been done in understanding the flow regimes within these microthrusters, there is a need to understand how different nozzle designs affect microthruster performance. This requires that experimental data be collected on varying nozzles shapes (orifices, …


Noise Source Analysis For Simulated Turbulent Jets, Robert W. Skidmore, Nitin S Dhamankar, Kurt M. Aikens, Gregory Blaisdell 2014 Purdue University

Noise Source Analysis For Simulated Turbulent Jets, Robert W. Skidmore, Nitin S Dhamankar, Kurt M. Aikens, Gregory Blaisdell

The Summer Undergraduate Research Fellowship (SURF) Symposium

Large Eddy Simulation (LES) is an efficient computational approach to study turbulent flows and has seen increasing application to the study of jet noise. The main challenge of LES has been the realistic simulation of experiments at reasonable cost. Recent LES studies have been realistic enough to gain important insight into jet noise from the large amount of data generated. This study attempts to characterize the sources of noise from a turbulent jet via analysis of the LES results. Three different analysis tools are implemented. The first two are comparable to analyses used on experimental data: two-point cross-correlations between far-field …


Particle Image Velocimetry Of Transverse Jets In Crossflow, Jesse K. Tsai, Kayla Kuzmich, David Forliti, Kriss Vanderhyde, Nils Sedano 2014 San Francisco State University

Particle Image Velocimetry Of Transverse Jets In Crossflow, Jesse K. Tsai, Kayla Kuzmich, David Forliti, Kriss Vanderhyde, Nils Sedano

STAR Program Research Presentations

The jet in crossflow (JICF) has been an ongoing study for the past several decades with applications in the field of fluid mechanics. This particular flow field produces vortical structures tied to the entrainment and mixing of two separate fluids. Research of the JICF seeks to determine a model and trajectory scaling law for future designs. This will help future designers to optimize the mixing and homogeneity of the two fluids to decrease emissions from pollutants, make ignition easier, and improve combustion efficiency of rockets.

Our experiment will employ Particle Image Velocimetry (PIV) to determine the fluid motion of the …


Effect Of Adaptive Tabs On Drag Of A Square-Base Bluff Body, Brian W. Barker 2014 California Polytechnic State University, San Luis Obispo

Effect Of Adaptive Tabs On Drag Of A Square-Base Bluff Body, Brian W. Barker

Master's Theses

This thesis involves the experimental wind tunnel testing of a 0.127m by 0.127m square-base bluff body to test the effectiveness of trailing edge tabulations to reduce drag in the Cal Poly 0.912m by 1.219 m low-speed wind tunnel. To accomplish this, the boundary layer was first measured on the trailing edge of the model for the three speeds at 10, 20, and 30 m/s, with Re = 8.3e4, 1.6e5 and 2.5e5 respectively, without the tabs. Three different tests were performed to determine the effectiveness of the tabs. These tests included base pressure measurements, total drag force measurements and hotwire velocity …


Hybrid Rocket Design Study Utilizing Nozzle Cooling And Aft-End Vortex Oxidizer Injection, John Nicholas Quigley 2014 University of Tennessee - Knoxville

Hybrid Rocket Design Study Utilizing Nozzle Cooling And Aft-End Vortex Oxidizer Injection, John Nicholas Quigley

Masters Theses

The current study focused on two innovations intended to reduce the cost and enhance the performance of hybrid rockets. The majority of the emphasis was placed on the design, fabrication and testing of a 3-D printed, water cooled nozzle. This work was done as proof of concept to show that complex, high temperature components could be manufactured using these new techniques, thereby substantially bringing down fabrication costs and allowing configurations that are not feasible using traditional machining. A water-cooled calorimeter nozzle was made and used in thrust stand tests to verify analytic and numerical heating models used in the design …


Experimental Investigation Of Active Wingtip Vortex Control Using Synthetic Jet Actuators, Peter J. Sudak 2014 California Polytechnic State University, San Luis Obispo

Experimental Investigation Of Active Wingtip Vortex Control Using Synthetic Jet Actuators, Peter J. Sudak

Master's Theses

An experiment was performed in the Cal Poly Mechanical Engineering 2x2 ft wind tunnel to quantify the effect of spanwise synthetic jet actuation (SJA) on the drag of a NACA 0015 semispan wing. The wing, which was designed and manufactured for this experiment, has an aspect ratio of 4.20, a span of 0.427 m (16.813”), and is built around an internal array of piezoelectric actuators, which work in series to create a synthetic jet that emanates from the wingtip in the spanwise direction. Direct lift and drag measurements were taken at a Reynolds Number of 100,000 and 200,000 using a …


Numerical Investigation Of Pyrolysis Gas Blowing Pattern And Thermal Response Using Orthotropic Charring Ablative Material, Haoyue Weng, Alexandre Martin 2014 University of Kentucky

Numerical Investigation Of Pyrolysis Gas Blowing Pattern And Thermal Response Using Orthotropic Charring Ablative Material, Haoyue Weng, Alexandre Martin

Mechanical Engineering Faculty Publications

An orthotropic material model is implemented in a three-dimensional material response code, and numerically studied for charring ablative material. Model comparison is performed using an iso-Q sample geometry. The comparison is presented using pyrolysis gas streamlines and time series of temperature at selected virtual thermocouples. Results show that orthotropic permeability affects both pyrolysis gas flow and thermal response, but orthotropic thermal conductivity essentially changes the thermal performance of the material. The effect of orthotropic properties may have practical use such that the material performance can be manipulated by altering the angle of orthotropic orientation.


Numerical Study Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Davuluri, Alexandre Martin 2014 University of Kentucky

Numerical Study Of Spallation Phenomenon In An Arc-Jet Environment, Raghava Davuluri, Alexandre Martin

Mechanical Engineering Faculty Publications

The spallation phenomenon might affect the aerodynamic heating rates of re-entry vehicles. To investigate spallation effects, a code is developed to compute the dynamics of spalled particles. The code uses a finite-rate chemistry model to study the chemical interactions of the particles with the flow field. The spallation code is one-way coupled to a CFD solver that models the hypersonic flow field around an ablative sample. Spalled particles behavior is numerically studied for argon and air flow field. The chemistry model is compared with that of Park's model which complies with oxidation and sublimation and shows disagreement for nitridation.


Separation Bubbles And Vortex Formation In Cavity Flows, Kartheek Ravulapati 2014 Embry-Riddle Aeronautical University - Daytona Beach

Separation Bubbles And Vortex Formation In Cavity Flows, Kartheek Ravulapati

Doctoral Dissertations and Master's Theses

This research is a computational fluid dynamic study of the formation of vortices and separation bubbles in a square cavity as well as in a cylindrical cavity. Whereas there has been previous research work on the problem of a free stream over different types of cavities, like open and closed cavities or lid driven cavities, this research on an inlet induced flow inside a square cavity lead to unusual and interesting basic fluid dynamical phenomena. The flow in a square cavity and in a cylindrical cavity is simulated over a range of Reynolds numbers and the appearance of separation bubbles …


Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight 2014 University of Tennessee - Knoxville

Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight

Masters Theses

Lithium (Li) behavior inside a high temperature Nb-Li leading edge heat pipe was successfully imaged under induction heating operation via neutron imaging. Startup and cool-down operations gave visual confirmation of bulk Li movement using both gravity assisted and inverted operating orientations. The pipe was imaged during an operation cycle from ambient conditions, heated to a steady state temperature of 908.8 0C, and allowed to cool below 200°C. The experiment was performed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, and at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee.

Tomographic images …


A Qualitative Experimental Study Of Drag Reduction Devices For Tractor Trailers With Ground Effects, Nicolas Robert Reed 2014 University of Tennessee - Knoxville

A Qualitative Experimental Study Of Drag Reduction Devices For Tractor Trailers With Ground Effects, Nicolas Robert Reed

Masters Theses

This is an experimental qualitative study of how drag reduction devices affect air flow around a tractor trailer. A 1/32 scale detail model of a truck with its trailer was used for testing in a 20"x14" low speed wind tunnel at the University of Tennessee Space Institute. Major modifications were made to the wind tunnel so that it would include a moving bed (floor) section for ground effect simulation. This was done to accurately simulate relative ground movement with the truck being held stationary in the tunnel flow.

Drag reduction devices were designed based on aerodynamic fundamental understanding for streamlining …


Performance Improvement Through Velocity Triangle Optimization-Driven Redesign For Mitigating The Horseshoe Vortex In Axial Turbines, Vladislav Shulman 2014 Embry-Riddle Aeronautical University - Daytona Beach

Performance Improvement Through Velocity Triangle Optimization-Driven Redesign For Mitigating The Horseshoe Vortex In Axial Turbines, Vladislav Shulman

Doctoral Dissertations and Master's Theses

Momentum differences between the neighboring streamlines at the end wall/primary flow interaction region of an axial turbine stage induce three-dimensional vortical flow structures, such as the leading edge horseshoe vortex, resulting in significant aerodynamic performance deterioration. Reducing the effect of such flow instabilities requires turbine blade modification to discourage boundary layer roll-up, but traditional structural modification design systems can be prohibitively complex and time-intensive.

To address this problem, this study contributes a blade modification method involving airfoil shape optimization, designed to adjust the leading edge airfoil shape in horseshoe vortex-affected turbine applications. The key insight is that airfoil design (treated …


Slosh Damping With Floating Magnetoactive Micro-Baffles, Vijay Santhanam 2014 Embry-Riddle Aeronautical University - Daytona Beach

Slosh Damping With Floating Magnetoactive Micro-Baffles, Vijay Santhanam

Doctoral Dissertations and Master's Theses

Liquid sloshing within propellant tanks of launch vehicles and other major vehicles has been a major concern. Various methods have been utilized for the damping of slosh through Propellant Management Devices (PMD) accomplishing a wide range of results. Exploratory research conducted at the Embry-Riddle Aeronautical University Fuel Slosh Test Facility in development of an innovative PMD is presented. Embedding floating micro-baffles with a magnetoactive material such that the baffle can be manipulated when exposed to a magnetic field preserves the benefits of both floating and static baffle designs. Activated micro-baffles form a rigid layer at the free surface and provide …


Physical Simulation Of Tornado-Like Vortices, Maryam Refan 2014 The University of Western Ontario

Physical Simulation Of Tornado-Like Vortices, Maryam Refan

Electronic Thesis and Dissertation Repository

Scaling ratios of simulations are essential to research the effect of tornadic winds on buildings and structures, in both experimental and numerical studies. In order to determine the proper scaling, access to wind fields of simulated and full-scale tornadoes is needed. For the first time here Doppler radar tornado velocity fields are analyzed and compared to experimental tornado-like vortices data in order to establish the scaling necessary to simulate tornadoes in a physical laboratory setting.

A prototype three-dimensional wind testing chamber capable of simulating tornadoes, named Model WindEEE Dome (MWD), was designed and built. Tornado-like vortices were simulated and investigated …


Influence Of Mach Number And Dynamic Pressure On Cavity Tones And Freedrop Trajectories, Justin D. Merrick 2014 Air Force Institute of Technology

Influence Of Mach Number And Dynamic Pressure On Cavity Tones And Freedrop Trajectories, Justin D. Merrick

Theses and Dissertations

Weapons release at supersonic speeds from an internal weapons bay is a highly desirable capability. To ensure a successful release at multiple Mach numbers, the aerodynamic environment must be well-understood and repeatable, with a robust system for safe testing of store separation. For this reason, experimental methods were used to investigate the characteristics of a scaled WICS bay with a length-to-depth ratio of 4.5 at multiple Mach numbers and stagnation pressures. Three new nozzles were designed, manufactured, and characterized for the AFIT small supersonic tunnel, yielding freestream Mach numbers of 2.22, 1.84, and 1.43. In addition, a control valve was …


Experimental Study On Influence Of Pitch Motion On The Wake Of A Floating Wind Turbine Model, Stanislav Rockel, Elizabeth Camp, Jonas Schmidt, Joachim Peinke, Raúl Bayoán Cal, Michael Höllimg 2014 University of Oldenburg

Experimental Study On Influence Of Pitch Motion On The Wake Of A Floating Wind Turbine Model, Stanislav Rockel, Elizabeth Camp, Jonas Schmidt, Joachim Peinke, Raúl Bayoán Cal, Michael Höllimg

Mechanical and Materials Engineering Faculty Publications and Presentations

Wind tunnel experiments were performed, where the development of the wake of a model wind turbine was measured using stereo Particle Image Velocimetry to observe the influence of platform pitch motion. The wakes of a classical bottom fixed turbine and a streamwise oscillating turbine are compared. Results indicate that platform pitch creates an upward shift in all components of the flow and their fluctuations. The vertical flow created by the pitch motion as well as the reduced entrainment of kinetic energy from undisturbed flows above the turbine result in potentially higher loads and less available kinetic energy for a downwind …


Flight And Stability Of A Laser Inertial Fusion Energy Target In The Drift Region Between Injection And The Reaction Chamber With Computational Fluid Dynamics, Tiffany Leilani Mitori 2014 California Polytechnic State University, San Luis Obispo

Flight And Stability Of A Laser Inertial Fusion Energy Target In The Drift Region Between Injection And The Reaction Chamber With Computational Fluid Dynamics, Tiffany Leilani Mitori

Master's Theses

A Laser Inertial Fusion Energy (LIFE) target’s flight through a low Reynolds number and high Mach number regime was analyzed with computational fluid dynamics software. This regime consisted of xenon gas at 1,050 K and approximately 6,670 Pa. Simulations with similar flow conditions were performed over a sphere and compared with experimental data and published correlations for validation purposes. Transient considerations of the developing flow around the target were explored. Simulations of the target at different velocities were used to determine correlations for the drag coefficient and Nusselt number as functions of the Reynolds number. Simulations with different target angles …


On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman 2014 California Polytechnic State University, San Luis Obispo

On The Growth Rate Of Turbulent Mixing Layers: A New Parametric Model, Jeffrey L. Freeman

Master's Theses

A new parametric model for the growth rate of turbulent mixing layers is proposed. A database of experimental and numerical mixing layer studies was extracted from the literature to support this effort. The domain of the model was limited to planar, spatial, nonreacting, free shear layers that were not affected by artificial mixing enhancement techniques. The model is split into two parts which were each tuned to optimally fit the database; equations for an incompressible growth rate were derived from the error function velocity profile, and a function for a compressibility factor was generalized from existing theory on the convective …


Digital Commons powered by bepress