Japanese-English Translation: Miki Kiyoshi—Thinking With Master Nishida, Pts. 1 & 2 Of 4 (First Published In Fujin Kōron, August 1941):「西田先生のことども」、総四章の第一章と第二章、三木清著(初発 婦人公論、昭和十六年8月),
2023
Binghamton University--SUNY
Japanese-English Translation: Miki Kiyoshi—Thinking With Master Nishida, Pts. 1 & 2 Of 4 (First Published In Fujin Kōron, August 1941):「西田先生のことども」、総四章の第一章と第二章、三木清著(初発 婦人公論、昭和十六年8月), Christopher Southward
Comparative Literature Faculty Scholarship
日英翻訳文:「西田先生のことども」、総四章の第一章と第二章、三木清著
[Miki Kiyoshi--Thinking with Master Nishida, Parts 1 & 2 of 4]. Translated, revised, formatted, and edited by Christopher Southward, 2022-2023. All rights reserved
Miki Kiyoshi's account of his apprenticeship under Nishida Kitarō at Kyoto University with considerations of his mentor's unique contributions to Japanese philosophy through critical engagements with the West.
Three Essays On Substructural Approaches To Semantic Paradoxes,
2023
The Graduate Center, City University of New York
Three Essays On Substructural Approaches To Semantic Paradoxes, Brian C. Porter
Dissertations, Theses, and Capstone Projects
This thesis consists of three papers on substructural approaches to semantic paradoxes. The first paper introduces a formal system, based on a nontransitive substructural logic, which has exactly the valid and antivalid inferences of classical logic at every level of (meta)inference, but which I argue is still not classical logic. In the second essay, I introduce infinite-premise versions of several semantic paradoxes, and show that noncontractive substructural approaches do not solve these paradoxes. In the third essay, I introduce an infinite metainferential hierarchy of validity curry paradoxes, and argue that providing a uniform solution to the paradoxes in this hierarchy …
Zero, Śūnya And Pūrṇa: A Comparative Analysis,
2023
San Jose State University
Zero, Śūnya And Pūrṇa: A Comparative Analysis, Animisha Tewari
Comparative Philosophy
Due to apparent duality in this world, one has to face a lot of difficulties while searching for the Truth. Our ego is the root cause for perception of duality and this in turn leads to suffering. This suffering can only be extinguished by attainment of the Truth, i.e, non-duality. However, in order to enable the finite intellect to comprehend the incomprehensible non-duality, this undifferentiated whole is sometimes denoted by nothingness (śūnya) or fullness (pūrṇa). Non-duality is usually understood by the numeral ‘1’ which stands for unity or oneness. The main aim of this paper is …
Ineffability, Emptiness And The Aesthetics Of Logic,
2023
San Jose State University
Ineffability, Emptiness And The Aesthetics Of Logic, Andreas Kapsner
Comparative Philosophy
In this essay, I explore the nature of the logical analysis of Buddhist thought that Graham Priest has offered in his book The Fifth Corner of Four (5of4). The paper traces the development of a logical value in- troduced in 5of4, which Priest has called e. The paper points out that certain criticisms I have made earlier still stand, but focuses on a recon- ceptualization of 5of4 in which these arguments carry less weight. This new perspective on the book, inspired by a response to my arguments by Priest himself, sees the logical analysis of Buddhism …
Collation Model For Ljs 457: Loyca Parva ... [Etc.].,
2022
University of Pennsylvania
Collation Model For Ljs 457: Loyca Parva ... [Etc.]., Dot Porter
Collation Models
Work on scholastic logic used in universities in the late 15th century by Paolo Veneto, professor of logic in Padua, Siena (1420-1424), and Perugia (1424-1428); member of the community of Hermits of Saint Augustine in Perugia.. Followed by a brief logical work by Paolo della Pergola, a student of Paolo Veneto.
Necessity, Essence And Analyticity: Toward An Analytic Essentialist Account Of Necessity,
2022
The Graduate Center, City University of New York
Necessity, Essence And Analyticity: Toward An Analytic Essentialist Account Of Necessity, Dongwoo Kim
Dissertations, Theses, and Capstone Projects
Some truths could not have failed to hold. Such are called metaphysically necessary truths. As Michael Dummett once aptly formulated, the philosophical problem about necessity is twofold: what makes necessary truths necessarily true and how do we recognize them as such? This dissertation aims to address these questions by developing and defending a novel account of necessity, which has the following three main theses: (1) the necessity of a statement about an entity is established as a consequence of a general principle implying that if the entity is a certain way then it is necessarily that way and the fact …
Foundational Mathematical Beliefs And Ethics In Mathematical Practice And Education,
2022
Charles A. Dana Center
Foundational Mathematical Beliefs And Ethics In Mathematical Practice And Education, Richard Spindler
Journal of Humanistic Mathematics
Foundational philosophical beliefs about mathematics in the mathematical community may have an unappreciated yet profound impact on ethics in mathematical practice and mathematics education, which also affects practice. A philosophical and historical basis of the dominant platonic and formalist views of mathematics are described and evaluated, after which an alternative evidence-based foundation for mathematical thought is outlined. The dualistic nature of the platonic view based on intuition is then compared to parallel historical developments of universalizing ethics in Western thought. These background ideas set the stage for a discussion of the impact of traditional mathematical beliefs on ethics in the …
Ethics And Mathematics – Some Observations Fifty Years Later,
2022
University of Siegen
Ethics And Mathematics – Some Observations Fifty Years Later, Gregor Nickel
Journal of Humanistic Mathematics
Almost exactly fifty years ago, Friedrich Kambartel, in his classic essay “Ethics and Mathematics,” did pioneering work in an intellectual environment that almost self-evidently assumed a strict separation of the two fields. In our first section we summarize and discuss that classical paper. The following two sections are devoted to complement and contrast Kambartel’s picture. In particular, the second section is devoted to ethical aspects of the indirect and direct mathematization of modern societies. The final section gives a short categorization of various philosophical positions with respect to the rationality of ethics and the mutual relation between ethics and mathematics.
Unknowable Truths: The Incompleteness Theorems And The Rise Of Modernism,
2022
Belmont University
Unknowable Truths: The Incompleteness Theorems And The Rise Of Modernism, Caroline Tvardy
Honors Scholars Collaborative Projects
This thesis evaluates the function of the current history of mathematics methodologies and explores ways in which historiographical methodologies could be successfully implemented in the field. Traditional approaches to the history of mathematics often lack either an accurate portrayal of the social and cultural influences of the time, or they lack an effective usage of mathematics discussed. This paper applies a holistic methodology in a case study of Kurt Gödel’s influential work in logic during the Interwar period and the parallel rise of intellectual modernism. In doing so, the proofs for Gödel’s Completeness and Incompleteness theorems will be discussed as …
Semantic Completeness Of Intuitionistic Predicate Logic In A Fully Constructive Meta-Theory,
2022
Western Kentucky University
Semantic Completeness Of Intuitionistic Predicate Logic In A Fully Constructive Meta-Theory, Ian Ray
Masters Theses & Specialist Projects
A constructive proof of the semantic completeness of intuitionistic predicate logic is explored using set-generated complete Heyting Algebra. We work in a constructive set theory that avoids impredicative axioms; for this reason the result is not only intuitionistic but fully constructive. We provide background that makes the thesis accessible to the uninitiated.
Inferring Inferences: Relational Propositions For Argument Mining,
2022
University of North Alabama
Inferring Inferences: Relational Propositions For Argument Mining, Andrew Potter
Proceedings of the Society for Computation in Linguistics
Inferential reasoning is an essential feature of argumentation. Therefore, a method for mining discourse for inferential structures would be of value for argument analysis and assessment. The logic of relational propositions is a procedure for rendering texts as expressions in propositional logic directly from their rhetorical structures. From rhetorical structures, relational propositions are defined, and from these propositions, logical expressions are then generated. There are, however, unsettled issues associated with Rhetorical Structure Theory (RST), some of which are problematic for inference mining. This paper takes a deep dive into some of these issues, with the aim of elucidating the problems …
Russian Logics And The Culture Of Impossible: Part Ii: Reinterpreting Algorithmic Rationality,
2022
Singapore Management University
Russian Logics And The Culture Of Impossible: Part Ii: Reinterpreting Algorithmic Rationality, Ksenia Tatarchenko, Anya Yermakova, Liesbeth De Mol
Research Collection School of Social Sciences
This article reinterprets algorithmic rationality by looking at the interaction between mathematical logic, mechanized reasoning, and, later, computing in the Russian Imperial and Soviet contexts to offer a history of the algorithm as a mathematical object bridging the inner and outer worlds, a humanistic vision that we, following logician Vladimir Uspensky, call the “culture of the impossible.” We unfold the deep roots of this vision as embodied in scientific intelligentsia. In Part I, we examine continuities between the turn-of-the-twentieth-century discussions of poznaniye—an epistemic orientation towards the process of knowledge acquisition—and the postwar rise of the Soviet school of mathematical logic. …
Assessing Risk At The National Strategic Level: Visualization Tools For Military Planners,
2021
US Army War College
Assessing Risk At The National Strategic Level: Visualization Tools For Military Planners, Wade A. Germann, Heather S. Gregg
The US Army War College Quarterly: Parameters
The reemergence of great power competition, conflict with near-peer competitor states below the level of armed conflict, and persisting threats from nonstate actors with transnational ambitions and global reach pose challenges for strategists planning, executing, and assessing military operations and strategy. Building on current visualization tools, two proposed models—the National Strategic Risk Abacus and the National Strategic Risk Radar Chart—address these challenges and better depict how the US military may inadvertently contribute to risk at the national strategic level.
Patrick Aidan Heelan’S The Observable: Heisenberg’S Philosophy Of Quantum Mechanics,
2021
Dublin City University
Patrick Aidan Heelan’S The Observable: Heisenberg’S Philosophy Of Quantum Mechanics, Paul Downes
Research Resources
The publication of Patrick Aidan Heelan’s The Observable, with forewords from Michel Bitbol, editor Babette Babich and the author himself, offers a timely invitation to reconsider the relation between quantum physics and continental philosophy.
Patrick Heelan does so, as a contemporary of and interlocutor with Werner Heisenberg on these issues, as a physicist himself who trained with leading figures of quantum mechanics (QM), Erwin Schrödinger and Eugene Wigner. Moreover, Heelan highlights Heisenberg’s interest in phenomenology as ‘a friend and frequent visitor of Martin Heidegger’ (55). Written originally in 1970 and unpublished then for reasons Babich explicates in her foreword, …
Dimentia: Footnotes Of Time,
2021
Bard College
Dimentia: Footnotes Of Time, Zachary Hait
Senior Projects Spring 2021
Time from the physicist's perspective is not inclusive of our lived experience of time; time from the philosopher's perspective is not mathematically engaged, in fact Henri Bergson asserted explicitly that time could not be mathematically engaged whatsoever. What follows is a mathematical engagement of time that is inclusive of our lived experiences, requiring the tools of storytelling.
Recognizing Mathematics Students As Creative: Mathematical Creativity As Community-Based And Possibility-Expanding,
2020
Boston University
Recognizing Mathematics Students As Creative: Mathematical Creativity As Community-Based And Possibility-Expanding, Meghan Riling
Journal of Humanistic Mathematics
Although much creativity research has suggested that creativity is influenced by cultural and social factors, these have been minimally explored in the context of mathematics and mathematics learning. This problematically limits who is seen as mathematically creative and who can enter the discipline of mathematics. This paper proposes a framework of creativity that is based in what it means to know or do mathematics and accepts that creativity is something that can be nurtured in all students. Prominent mathematical epistemologies held since the beginning of the twentieth century in the Western mathematics tradition have different implications for promoting creativity in …
Don’T Be So Fast With The Knife: A Reply To Kapsner,
2020
San Jose State University
Don’T Be So Fast With The Knife: A Reply To Kapsner, Graham Priest
Comparative Philosophy
The is a brief reply to the central objection against the construction of my The Fifth Corner of Four by Andi Kapsner in his “Cutting Corners: A Critical Note on Priest’s Five-Valued Catuṣkoṭi. This concerns the desirability of adding a fifth corner (ineffability) to the four of the catuṣkoṭi.
Cutting Corners: A Critical Note On Priest’S Five-Valued Catuṣkoṭi,
2020
San Jose State University
Cutting Corners: A Critical Note On Priest’S Five-Valued Catuṣkoṭi, Andreas Kapsner
Comparative Philosophy
Graham Priest has offered a rational reconstruction of Buddhist thought that involves, first, modeling the Catuṣkoṭi by a four valued logic, and then later adding a fifth value, read as “ineffability”. This note examines that fifth value and raises some concerns about it that seem grave enough to reject it. It then sketches an alternative to Priest’s account that has no need for the fifth value.
A Russellian Analysis Of Buddhist Catuskoti,
2020
San Jose State University
A Russellian Analysis Of Buddhist Catuskoti, Nicholaos Jones
Comparative Philosophy
Names name, but there are no individuals who are named by names. This is the key to an elegant and ideologically parsimonious strategy for analyzing the Buddhist catuṣkoṭi. The strategy is ideologically parsimonious, because it appeals to no analytic resources beyond those of standard predicate logic. The strategy is elegant, because it is, in effect, an application of Bertrand Russell's theory of definite descriptions to Buddhist contexts. The strategy imposes some minor adjustments upon Russell's theory. Attention to familiar catuṣkoṭi from Vacchagotta and Nagarjuna as well as more obscure catuṣkoṭi from Khema, Zhi Yi, and Fa Zang motivates the …
Connecting Ancient Philosophers’ Math Theory To Modern Fractal Mathematics,
2020
College of the Holy Cross
Connecting Ancient Philosophers’ Math Theory To Modern Fractal Mathematics, Colin Mccormack
Parnassus: Classical Journal
No abstract provided.